不同点:
一、本质不同。
二、成膜技术不同。
有机半导体的成膜技术比无机半导体更多、更新。
三、性能不同。
有机半导体比无机半导体呈现出更好的柔韧性,而且质量更轻。有机场效应器件也比无机的制作工艺也更为简单。
相同点:运用范围相同,都是主要运用在收音机、电视机和测温上。
扩展资料
无机合成物半导体。无机合成物主要是通过单一元素构成半导体材料,当然也有多种元素构成的半导体材料,主要的半导体性质有I族与V、VI、VII族;II族与IV、V、VI、VII族;III族与V、VI族;IV族与IV、VI族;V族与VI族;VI族与VI族的结合化合物。
但受到元素的特性和制作方式的影响,不是所有的化合物都能够符合半导体材料的要求。这一半导体主要运用到高速器件中,InP制造的晶体管的速度比其他材料都高,主要运用到光电集成电路、抗核辐射器件中。对于导电率高的材料,主要用于LED等方面。
有机合成物半导体。有机化合物是指含分子中含有碳键的化合物,把有机化合物和碳键垂直,叠加的方式能够形成导带,通过化学的添加,能够让其进入到能带,这样可以发生电导率,从而形成有机化合物半导体。
这一半导体和以往的半导体相比,具有成本低、溶解性好、材料轻加工容易的特点。可以通过控制分子的方式来控制导电性能,应用的范围比较广,主要用于有机薄膜、有机照明等方面。
参考资料:百度百科-半导体
可以。研究人员利用溶液过饱和度、气相扩散温度梯度、表面纳米沟槽等诱导效应,对有机半导体晶相生长的热力学和动力学过程进行调控,获得了堆积结构紧密的单晶或晶态膜,表现出非常高的载流子迁移率。通过选择不同的溶液浓度控制其过饱和度,首次可控地制备了硫杂并苯衍生物的不同晶相的单晶。β晶体(HOMO-1)能级之间的电子耦合作用明显高于α晶体,并对电荷传输性能起主导作用,导致β单晶载流子迁移率高达18.9 cm2 V-1 s-1,证实了不同的堆积结构能造成非简并(HOMO-1)能级电子耦合作用的显著差异,从而对电荷传输产生重要的影响,为有机半导体堆积结构的调控提供了一种新的理念和思路(Adv. Mater. 2015, 27, 825)。
进一步采用物理气相传输的方法,通过控制温度梯度,第一次选择性地得到了酞菁氧钛的α和β两个晶相的单晶,构筑了单晶场效应晶体管。α晶相具有典型的二维电荷传输通道,最高载流子迁移率为26.8 cm2 V-1 s-1,是酞氰类有机半导体的最高值。β晶相具有三维电荷传输通道,层与层之间具有较强的电子耦合作用,其方向与电荷传输方向垂直,干扰了电荷传输行为,只获得了最高0.1 cm2 V-1 s-1的迁移率。这一发现突破了“三维电荷传输半导体优于低维半导体”的传统看法,说明了分子层间的电子耦合作用对于电荷输运具有重要的影响。
最近研究人员发现聚酰亚胺PI的热前驱体聚酰胺酸PAA薄膜表面强极性和纳米沟槽结构能选择性诱导并五苯分子站立生长,聚集形成有利于电荷传输的正交相,并且能进一步形成尺寸大、晶界少的高晶态薄膜,迁移率高达30.6 cm2 V-1 s-1,是迄今为止并五苯薄膜器件的最高值,也是有机半导体最高迁移率的少数例子之一。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)