单反的CMOS是什么?具体有什么用?

单反的CMOS是什么?具体有什么用?,第1张

CMOS是Complementary Metal Oxide Semiconductor的缩写,即互补金属氧化物半导体。它是指制造大规模集成电路芯片用的一种技术或用这种技术制造出来的芯片。CMOS常被应用于数码影像器材为感光元件(常见的有CCD和CMOS),尤其是片幅规格较大的单反数码相机。

CMOS用于单反的作用是:透过芯片上的模-数转换器(ADC)将获得的影像讯号转变为数字信号输出。在CMOS 芯片中,每个像元中放大器的带宽要求较低,降低了芯片功耗;将图像信号放大器、信号读取电路、A/D转换电路等集成到一块芯片,就可实现相机所有基本功能,集成度很高。

扩展资料:

影响CMOS图像传感的性能因素

1、噪声

这是影响CMOS传感性能的首要问题。这种噪声包括固定图形噪声FPN、暗电流噪声、热噪声等。固定图形噪声产生的原因是一束同样的光照射到两个不同的象素上产生的输出信号不完全相同。噪声正是这样被引入的。

2、暗电流

物理器件由于杂质、受热等其他原因的影响,即使没有光照射到象素,象素单元也会产生电荷,这些电荷产生了暗电流。暗电流在像素阵列各处也不完全相同,它会导致固定图形噪声。对于含有积分功能的像素单元来说,暗电流所造成的固定图形噪声与积分时间成正比。

为减少暗电流对图像信号的影响,首先可以采取降温手段。但是,仅对芯片降温是远远不够的,由暗电流产生的固定图形噪声不能完全通过双采样克服。采用的有效的方法是从已获得的图像信号中减去参考暗电流信号。

3、象素的饱和与溢出模糊

类对于CMOS图像传感芯片来说,它也有一个输入的上限。输入光信号若超过此上限,像素单元将饱和而不能进行光电转换。对于含有积分功能的像素单元来说,此上限由光电子积分单元的容量大小决定:对于不含积分功能的像素单元,该上限由流过光电二极管或三极管的最大电流决定。

参考资料来源:百度百科-CMOS

数码单反相机采用CMOS和CCD的优劣对比:\r\n1、ISO 感光度差异:由于 CMOS 每个像素包含了放大器与A/D转换电路,过多的额外设备压缩单一像素的感光区域的表面积,因此 相同像素下,同样大小之感光器尺寸,CMOS的感光度会低于CCD。\r\n2、成本差异:CMOS 应用半导体工业常用的 MOS制程,可以一次整合全部周边设施于单晶片中,节省加工晶片所需负担的成本和良率的损失;相对地 CCD 采用电荷传递的方式输出资讯,必须另辟传输通道,如果通道中有一个像素故障(Fail),就会导致一整排的讯号壅塞,无法传递,因此CCD的良率比CMOS低,加上另辟传输通道和外加ADC等周边,CCD的制造成本相对高于CMOS。\r\n3、解析度差异:在第一点“感光度差异”中,由于CMOS每个像素的结构比CCD复杂,其感光开口不及CCD大, 相对比较相同尺寸的CCD与CMOS感光器时,CCD感光器的解析度通常会优于CMOS。不过,如果跳脱尺寸限制,目前业界的CMOS感光原件已经可达到1400万像素/全画幅的设计,CMOS技术在量率上的优势可以克服大尺寸感光原件制造上的困难,特别是全画幅 24mmX36mm 这样的大小。\r\n4、噪点差异:由于CMOS每个感光二极体旁都搭配一个ADC放大器,如果以百万像素计,那么就需要百万个以上的ADC放大器,虽然是统一制造下的产品,但是每个放大器或多或少都有些微的差异存在,很难达到放大同步的效果,对比单一个放大器的CCD,CMOS最终计算出的噪点就比较多。\r\n5、耗电量差异:CMOS的影像电荷驱动方式为主动式,感光二极体所产生的电荷会直接由旁边的电晶体做放大输出;但CCD却为被动式, 必须外加电压让每个像素中的电荷移动至传输通道。而这外加电压通常需要12伏特(V)以上的水平,因此CCD还必须要有更精密的电源线路设计和耐压强度,高驱动电压使CCD的电量远高于CMOS。

CMOS是互补金属氧化物半导体的简称,是半导体集成电路的一种生产工艺,现代相机的感光元件很多都是用这种工艺生产的,所以也被简称为CMOS了。类似的情况在电脑里也有,电脑的BIOS芯片很多人也叫CMOS,也是这个原因。

拓展资料:

结构和元件

通常,照相机主要元件包括:成像元件、暗室、成像介质与成像控制结构。

成像元件可以进行成像。通常是由光学玻璃制成的透镜组,称之为镜头。小孔、电磁线圈等在特定的设备上都起到了“镜头”的作用。

成像介质则负责捕捉和记录影像。包括底片、CCD、CMOS等。

暗室为镜头与成像介质之间提供一个连接并保护成像介质不受干扰。

控制结构可以改变成像或记录影像的方式以影像最终的成像效果。光圈、快门、聚焦控制等。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/8686386.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-19
下一篇 2023-04-19

发表评论

登录后才能评论

评论列表(0条)

保存