有机半导体和无机半导体的异同点

有机半导体和无机半导体的异同点,第1张

不同点:

一、本质不同。

有机半导体是有机合成的,无机半导体是无机合成的。

二、成膜技术不同。

有机半导体的成膜技术比无机半导体更多、更新。

三、性能不同。

有机半导体比无机半导体呈现出更好的柔韧性,而且质量更轻。有机场效应器件也比无机的制作工艺也更为简单。

相同点:运用范围相同,都是主要运用在收音机、电视机和测温上。

扩展资料

无机合成物半导体。无机合成物主要是通过单一元素构成半导体材料,当然也有多种元素构成的半导体材料,主要的半导体性质有I族与V、VI、VII族;II族与IV、V、VI、VII族;III族与V、VI族;IV族与IV、VI族;V族与VI族;VI族与VI族的结合化合物。

但受到元素的特性和制作方式的影响,不是所有的化合物都能够符合半导体材料的要求。这一半导体主要运用到高速器件中,InP制造的晶体管的速度比其他材料都高,主要运用到光电集成电路、抗核辐射器件中。 对于导电率高的材料,主要用于LED等方面。

有机合成物半导体。有机化合物是指含分子中含有碳键的化合物,把有机化合物和碳键垂直,叠加的方式能够形成导带,通过化学的添加,能够让其进入到能带,这样可以发生电导率,从而形成有机化合物半导体。

这一半导体和以往的半导体相比,具有成本低、溶解性好、材料轻加工容易的特点。可以通过控制分子的方式来控制导电性能,应用的范围比较广,主要用于有机薄膜、有机照明等方面。

参考资料:百度百科-半导体

人们对开发环境稳定、通过可见光吸收并具有极性晶体结构的新型太阳能收集器有相当大的兴趣。车轮矿CuPbSbS3是一种自然形成的硫盐矿物,它在非中心对称的Pmn21空间群中结晶,并且 对于单结太阳能电池具有最佳的带隙。 然而,关于这种四元半导体的合成文献很少,它还没有作为薄膜被沉积和研究。

基于此,来自南加州大学洛杉矶分校的一项研究,描述了二元硫醇-胺溶剂混合物在室温和常压下溶解大块布氏体矿物以及廉价的块状CuO、PbO和Sb2S3前驱体以生成墨水的能力。合成的复合墨水是由大量的二元前驱体按正确的化学计量比溶解而得到的,在溶液沉积和退火后,生成CuPbSbS3的纯薄膜。相关论文以题为“Solution Deposition of a Bournonite CuPbSbS3 Semiconductor Thin Film from the Dissolution of Bulk Materials with a Thiol-Amine Solvent Mixture”于3月11日发表在Journal of the American Chemical Society上。

论文链接:

https://pubs.acs.org/doi/10.1021/jacs.9b13787

近来,Wallace等人通过对天然矿物的筛选,得到的材料具有热力学稳定性,不具有杂化卤化铅钙钛矿所固有的环境不稳定性问题。极性结构可以降低激子的结合能,减少材料中的复合速率。极性晶体结构可以使直接带隙材料的偶极不允许跃迁的几率和在吸收开始时振子强度的相应降到最低。从筛选到的自然生成的多种矿物中,符合选择标准的结果之一是车轮矿CuPbSbS3。车轮矿CuPbSbS3是一种硫盐矿物,它在正交晶立方Pmn21空间群中结晶,根据实验报道,从1.20 eV到1.31 eV的带隙是单结太阳能电池的最佳选择。有关CuPbSbS3的合成文献很少,目前只有少量的固态合成和一种溶剂热合成。 到目前为止,这种材料还没有以薄膜的形式沉积或研究。

基于以上考虑,研究者开发了一种碱化溶剂系统,它利用短链硫醇和胺的二元混合物,能够溶解100多种散装材料,包括散装金属、金属硫族化合物和金属氧化物。所得到的油墨在溶液沉积和温和退火后通过溶解和恢复的方法返回纯相的硫族化合物薄膜,使其适用于大规模的溶液处理。事实上,硫醇-胺油墨已被有效地用于大面积黄铜矿和酯基太阳能电池的溶液沉积,具有极好的功率转换效率。

研究者首次展示了车轮矿CuPbSbS3薄膜沉积的方法。通过简单地调整大块前驱体的化学计量学,就可以精细地调整复合油墨的组成,从而允许沉积纯相的CuPbSbS3。制备的CuPbSbS3薄膜具有1.24 eV的直接光学带隙,在~105cm-1的可见光范围内具有较高的吸收系数。电学测量证实,固溶处理的CuPbSbS3薄膜具有0.01- 2.4 cm2(V•s)-1范围内的流动性,载体浓度为1018-1020cm-3。这突出了在薄膜太阳能电池中作为吸收层的潜力,需要进一步的研究。

图1 车轮矿CuPbSbS3的晶体结构图

图2 合成油墨以及相关测试图

图3 将纯相CuPbSbS3从油墨中滴铸并退火到450 ˚C的粉末XRD图谱。

图4 CuPbSbS3薄膜的相关测试表征图

图5 CuPbSbS3薄膜电阻率(ρ)随温度变化的函数。

该方法可推广应用于其它多晶半导体薄膜的溶液沉积,包括与I-IV-V-VII组成相关的半导体,如CuPbBiS3。 结果突出了碱化法在解决硫酸盐吸收层沉积问题上的前景 。(文:水生)


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/8691223.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-19
下一篇 2023-04-19

发表评论

登录后才能评论

评论列表(0条)

保存