单质硅是比较活泼的一种非金属元素,它能和96种稳定元素中的64种元素形成化合物。硅的主要用途是取决于它的半导性。
硅材料是当前最重要的半导材料。目前世界年产量约为3×106kg。一个直径75mm的硅片,可集成几万至几十万甚至几百万个元件,形成了微电子学,从而出现了微型计算机、微处理机等。由于当前信息工程的发展,硅主要用于微电子技术。以硅晶闸管为主的电力半导体器件,元件越做越大,与硅晶体管相比集成电路正相反,在直径为75mm的硅片上,只做一个能承受几kA电流和几kV电压的元件,这种元件渗透到电子、电力、控制3个领域就形成了一门新学科——电力电子学。
为适应大规模集成电路的发展、单晶硅正向大直径、高纯度、高均匀性,无缺陷方向发展。最大硅片直径已达150mm,实验室的高纯硅接近理论极限纯度。
目前常用的太阳能电池是硅电池。如果在1平方米面积上铺满硅太阳电池,就可以得到100W电力。单晶硅太阳能电池的性能稳定,转换效率高,体积小,重量轻,很适合作太空航天器上的电源。美国的大型航天器——太空实验室上就安装有4块太阳能电池帆板,它们是由147840块8平方厘米大小的单晶硅太阳能电池排列组成的,发电功率大约为12KW。
晶体硅包括单晶硅和多晶硅,晶体硅的制备方法大致是先用碳还原SiO2成为Si,用HCl反应再提纯获得更高纯度多晶硅,单晶硅的制法通常是先制得多晶硅或无定形硅,然后用直拉法或悬浮区熔法从熔体中生长出棒状单晶硅。硅的单晶体具有基本完整的点阵结构的晶体。不同的方向具有不同的性质,是一种良好的半导材料。纯度要求达到99.9999%,甚至达到99.9999999%以上。用于制造半导体器件、太阳能电池等。用高纯度的多晶硅在单晶炉内拉制而成。 熔融的单质硅在凝固时硅原子以金刚石晶格排列成许多晶核,如果这些晶核长成晶面取向相同的晶粒,则这些晶粒平行结合起来便结晶成单晶硅。 单晶硅具有准金属的物理性质,有较弱的导电性,其电导率随温度的升高而增加,有显著的半导电性。超纯的单晶硅是本征半导体。在超纯单晶硅中掺入微量的ⅢA族元素,如硼可提高其导电的程度,而形成p型硅半导体;如掺入微量的ⅤA族元素,如磷或砷也可提高导电程度,形成n型硅半导体。 单晶硅的制法通常是先制得多晶硅或无定形硅,然后用直拉法或悬浮区熔法从熔体中生长出棒状单晶硅。单晶硅主要用于制作半导体元件。
二、二氧化硅
性质:SiO2又称硅石。在自然界分布很广,如石英、石英砂等。白色或无色,含铁量较高的是淡黄色。密度2.2 ~2.66.熔点1670℃(鳞石英);1710℃(方石英)。沸点2230℃。不溶于水微溶于酸,微粒时能与熔融和碱类起作用。用于制玻璃、水玻璃、陶器、搪瓷、耐火材料、硅铁、型砂、单质硅等。 silicon dioxide CAS号:7631-86-9分子形状:四方晶系 摩尔质量:60.1 g mol-1 化学式SiO2,式量60.08。
也叫硅石,是一种坚硬难溶的固体。它常以石英、鳞石英、方石英三种变体出现。从地面往下16千米几乎65%为二氧化硅的矿石。天然的二氧化硅分为晶态和无定形两大类,晶态二氧化硅主要存在于石英矿中。纯石英为无色晶体,大而透明的棱柱状石英为水晶。二氧化硅是硅原子跟四个氧原子形成的四面体结构的原子晶体,整个晶体又可以看作是一个巨大分子,SiO2是最简式,并不表示单个分子。密度2.32g/cm3,熔点1723±5℃,沸点2230℃。
无定形二氧化硅为白色固体或粉末。化学性质很稳定。不溶于水也不跟水反应。是酸性氧化物,不跟一般酸反应。气态氟化氢或氢氟酸跟二氧化硅反应生成气态四氟化硅。跟热的强碱溶液或熔化的碱反应生成硅酸盐和水。跟多种金属氧化物在高温下反应生成硅酸盐。用于制造石英玻璃、光学仪器、化学器皿、普通玻璃、耐火材料、光导纤维,陶瓷等。
二氧化硅的性质不活泼,它不与除氟、氟化氢和氢氟酸以外的卤素、卤化氢和氢卤素以及硫酸、硝酸、高氯酸作用。氟化氢(氢氟酸)是唯一可使二氧化硅溶解的酸,生成易溶于水的氟硅酸:测其二氧化硅的比表面积,则使用全自动BET比表面积测试仪F-Sorb 2400 。 SiO2 + 4HF = SiF4↑ + 2H2O 二氧化硅与碱性氧化物 SiO2 + CaO =(高温) CaSiO3 二氧化硅能溶于浓热的强碱溶液: SiO2 + 2NaOH = Na2SiO3 + H2O (盛碱的试剂瓶不能用玻璃塞而用橡胶塞) 在高温下,二氧化硅能被碳、镁、铝还原: SiO2+2C=Si+2CO↑ 二氧化硅结构 在大多数微电子工艺感兴趣的温度范围内,二氧化硅的结晶率低到可以被忽略。
尽管熔融石英不是长范围有序,但她却表现出短的有序结构,它的结构可认为是4个氧原子位于三角形多面的脚上。多面体中心是一个硅原子。这样,每4个氧原子近似共价键合到硅原子,满足了硅的化合价外壳。如果每个氧原子是两个多面体的一部分,则氧的化合价也被满足,结果就成了称为石英的规则的晶体结构。在熔融石英中,某些氧原子,成为氧桥位,与两个硅原子键合。某些氧原子没有氧桥,只和一个硅原子键合。可以认为热生长二氧化硅主要是由人以方向的多面体网络组成的。与无氧桥位相比,有氧桥的部分越大,氧化层的粘合力就越大,而且受损伤的倾向也越小。干氧氧化层的有氧桥与无氧桥的比率远大于湿氧氧化层。因此,可以认为,SiO2与其说是原子晶体,却更近似于离子晶体。氧原子与硅原子之间的价键向离子键过渡。
二氧化硅是制造玻璃、石英玻璃、水玻璃、光导纤维和耐火材料的原料。 当二氧化硅结晶完美时就是水晶;二氧化硅胶化脱水后就是玛瑙;二氧化硅含水的胶体凝固后就成为蛋白石;二氧化硅晶粒小于几微米时,就组成玉髓、燧石、次生石英岩。 物理性质和化学性质均十分稳定的矿产资源,晶体属三方晶系的氧化物矿物,即低温石英(a-石英),是石英族矿物中分布最广的一个矿物种。广义的石英还包括高温石英(b-石英)。石英块又名硅石, 主要是生产石英砂(又称硅砂)的原料, 也是石英耐火材料和烧制硅铁的原料。
silicate minerals 一类由金属阳离子与硅酸根化合而成的含氧酸盐矿物。在自然界分布极广,是构成地壳、上地幔的主要矿物,估计占整个地壳的90%以上;在石陨石和月岩中的含量也很丰富。已知的约有800个矿物种,约占矿物种总数的1/4。许多硅酸盐矿物如石棉、云母、滑石、高岭石、蒙脱石、沸石等是重要的非金属矿物原料和材料。有的是提取金属钾、铝和稀有金属锂、铍、锆、铷、铯等的主要矿石矿物,如霞石、锂云母、绿柱石、锆石、天河石等。还有不少硅酸盐矿物如祖母绿、海蓝宝石、翡翠等都是珍贵的宝石矿物。
化学组成的特点: 组成硅酸盐矿物的元素达40余种。其中除了构成硅酸根所必不可少的Si和O以外,作为金属阳离子存在的主要是惰性气体型离子(如Na+、K+、Mg2+、Ca2+、Ba2+、Al3+等)和部分过渡型离子(如Fe2+、Fe3+、Mn2+、Mn3+、Cr3+、Ti3+等)的元素,铜型离子(如Cu+、Zn2+、Pb2+、Sn4+等)的元素较少见 。此外 ,还有 (OH)-、O2-、F-、C1-、[CO3 ]2-、[SO4] 2-等以附加阴离子的形式存在。在硅酸盐矿物的化学组成中广泛存在着类质同象替代,除金属阳离子间的替代非常普遍外,经常有Al3+、同时有Be2+或B3+等替代硅酸根中的Si4+,从而分别形成铝硅酸盐、铍硅酸盐和硼硅酸盐矿物。此外,少数情况下还可能有(OH)-替代硅酸根中的O2-。
半导体是这两年国家重点发展的行业,到底什么是半导体?
生活中所有的物体按照导电性大致可分为三类:导体、半导体、绝缘体。
这个很好理解,物体要么导电,要么不导电,要么有一点点导电,正是这种半推半就、不清不楚的物质给物理学家不同的发挥空间。
太绝对的导电和不导电的物质没什么意思,而在不同情况下导电性发生变化的东西才是有意思的。
来张图直观看看物体的导电性:
按照导电性便分为:
绝缘体: 电导率很低,约介于20-18S/cm 10-8S/cm,如熔融石英及玻璃;
导 体 :电导率较高,介于104S/cm 106S/cm,如铝、银等金属。
半导体: 电导率则介于绝缘体及导体之间。
自然界中常见的元素半导体有硅、锗,据说锗基半导体比硅基半导体还要更早发现和应用,但是硅的天然优势就是便宜!自然界中常见的沙石就含有大量的硅元素,你说有多多!
即使自然界中硅砂很多,但硅砂中包含的杂质太多,缺陷也太多,不能直接拿来用,需要对它进行提炼。
怎么提炼?一个字——烧!
正如初中化学所学的,进行氧化还原反应。
①SiC + SiO2 Si(固体)+ SiO2(气体)+ CO(气体)
②Si(固体)+ 3HC SiHCl3(气体)+ H2(气体)
③SiHCl3(气体)+ H2(气体) Si(固体)+ 3HCl(气体)
经过三次高温化学反应后,我们得到了固体硅,但这时候的硅是多晶硅。
啥是多晶硅?
如同我们剥橘子的时候,里面有很多瓣橘子(多晶橘子),而且不同瓣的橘子味道不一样(晶体方向),我们要选味道最好的一瓣橘子,选出来让这瓣橘子单独长大!
怎么让一个小的单晶单独长大呢?
物理学家还是很聪明的,发明了一种长单晶的办法,叫柴可拉斯基法,可能方法就是以这名科学家名字命名的。
行业也有一种直观的称呼,叫提拉法!
因为在长单晶时就是把小的晶体往上拔!拔的时候速度有点慢,来看看这个装置:
图中的这个蓝色的圆棒就是单晶硅,在提拉的时候一边旋转一边往上拔,提拉法长出来的晶锭就是圆柱体了。
再将长好的晶锭采用机械刀片进行切割,切成一片一片的圆盘状,便成了晶圆。
有没有很眼熟?
晶圆就是这样被生产出来了。
虽然我们得到了晶圆,此时的单晶硅电化学性能还不行,不能直接用来做芯片,工程师们于是想办法改造单晶硅的电化学性能。
如何改造单晶硅呢?
先深入了解一下硅元素,在元素周期表中,硅排列在第14位,硅原子最外层有4个电子,分别与周围4个原子共用4对电子,这种共用电子对的结构称为 共价键 (covalent bonding)。每个电子对组成一个共价键。
这部分知识初中化学学过,来张图片直观看看:
左边这张图是单晶硅的晶体结构,为金刚石晶体结构。右边这张图是硅原子共用电子的情况,中间一个硅原子和四个硅兄弟共用电子。
突然有一天,有个物理学家想到一个问题,要是硅家不是和硅兄弟共用电子,把其他兄弟拉进群会怎样?
物理学家有一天把砷兄拉进了群,于是奇迹发生了:
砷兄弟最外层有5个电子,其中4个电子找到了硅家的对象,另外一个电子单着了,这个电子成了无业游民,到处流窜,由于电子带有电荷,于是改变了硅家的导电性。
此时的砷原子多提供了一个电子给硅家,因此砷原子被称为施主。
硅家的自由电子多了以后,带负电的载流子增加,硅变成n型半导体。
为啥叫N型?在英文里Negative代表负,取这个单词的第一个字母,就是N。
同样,物理学家想,既然可以拉电子多的砷元素进群,那么是否也可以拉电子少的硼原子进群?于是物理学家把硼原子拉进来试试。
由于硼原子最外层只有3个电子,比硅少一个,于是本来2对电子的共价键现在成了只有一对电子,多了一个空位,成了带正电的空穴(hole)。
此时的硅基半导体被称为p型半导体,同样P来自英文单词Positive(正极)的首字母,而硼原子则被称为受主。
正是在硅单晶中加入的原子不同,便形成了N型半导体和P型半导体。
当我们有了单晶硅,并且可以想办法将单晶硅表面氧化成二氧化硅。二氧化硅可作为许多器件结构的绝缘体,或在器件制作过程中作为扩散或离子注入的阻挡层。
如在 p‒n 结的制造过程中,二氧化硅薄膜可用来定义结的区域。
来张示意图看看,(a)显示无覆盖层的硅晶片,正准备进行氧化步骤,图(b)只显示被氧化晶片的上表层。
有了P型和N型半导体的理论知识,还可以玩点复杂的,对二氧化硅表面进行改造,改造成我们想要的图形,比如画只猫,画朵花等…
对晶圆表面进行改造的办法就是光刻!
光刻那不是要用到高端光刻机?听说这种设备很牛逼….不如先看看光刻的原理:
利用高速旋涂设备(spinner),在晶片表面旋涂一层对紫外(UV)光敏感的材料,称为光刻胶(photoresist)。将晶片从旋涂机拿下之后在80ºC 100ºC之间烘烤,以驱除光刻胶中的溶剂并硬化光刻胶,加强光刻胶与晶片的附着力。接下来使用UV光源,通过一有图案的掩模版对晶片进行曝光。然后,使用缓冲氢氟酸作酸刻蚀液来移除没有被光刻胶保护的二氧化硅表面。最后,使用化学溶剂或等离子体氧化系统剥离(stripped)光刻胶。
看看示意图:
文字说的有点复杂,直观理解有点像刻印章,先在石头上用颜料涂个模型,然后按照模型的尺寸进行雕刻,基本是这个道理。
印章有阳刻和阴刻的区别,晶圆也是这样,根据光刻胶的选取不同,也能实现阳刻和阴刻,人们选用的光刻胶称为正胶和负胶。
光刻后的硅表面暴露于外界中,此时物理学家在这个硅表面通过不同方法加入其它元素,称为离子注入。
因为注入B或者As离子以后,这些离子加入到硅家以后改变了硅家的传统,硅的电化学性能发生了改变,此时的半导体叫做非本征(extrinsic)半导体。
而由P型半导体和N型半导体接触形成的结称为p-n结!
我们在掺杂完成以后,需要想办法将这个半导体的性能引出,于是将这个半导体表面金属化,欧姆接触(ohmic contact)和连线(interconnect)在接着的金属化步骤完成,金属薄膜可以用PVD或CVD来形成。
随着金属化的完成, p‒n 结就可以工作了!
简单的半导体知识就介绍这么多吧!
展开1全部硅石就是石英石的别称,主要成分为SiO2,天然矿体的纯度在90%以上,由于含有Fe2O3、Al2O3、MgO、MnO、CaF2等杂质,呈现黄褐色。高纯的晶体,称为水晶。工业用途:提炼多晶硅用于太阳能,单晶硅用于半导体电子材料和集成电路芯片。冶金行业制作铁合金,冶炼硅铁。化工行业制造硅烷,橡胶添加剂。。。。等等属于矿物加工行业欢迎分享,转载请注明来源:内存溢出
评论列表(0条)