半导体是介于导体与绝缘体之间的材料。但半导体有个特性是导体和绝缘体所没有的,那就是可以做成两种不同特性的基片,再把这两种基片结合到一起就可体现绝缘和导体交替的特性,如二极体反向绝缘,正向导电,三极体通过一个控制端可让其导电就导电,让其绝缘就绝缘。所以就容易成为可以控制的器件,由此制作了很多电子产品
晶片为什么要用半导体作?矽做为半导体,可以有很多特殊的功能.在高纯的矽加些别的微量元素可以有独特的作用,比如做2J管.3J管,实际上很多硬体都是由各种电子元件构成的 ,其中不缺乏2.3J电晶体.
什么叫杂质半导体?杂质半导体有哪几种?为什么要往纯净的半导体中掺入杂质?本征半导体经过掺杂就形成杂质半导体,一般可分为n型半导体和p型半导体,半导体中的杂质对电导率的影响,本征半导体掺杂后形成的P型或N型半导体,是制造积体电路,二极体电晶体的必须材料 :baike.baidu./view/1003023.?wtp=tt
导体和半导体有什么区别 半导体也能导电为什么不叫导体导体,一般指金属,其在常温下的金属晶体结构与晶体矽等半导体是大不相同的,虽然名义上金属在非化合态的时候电子轨道最外层也有1-4个电子在围绕原子核高速旋转,看起来是受原子核严密控制的,但实际上金属晶体的结构却十分松散,金属原子之间可以滑动,这就是为什么金属有或多或少的延展性,而电子们的活动就更为自由,当有外电压的作用时,他们就会发生定向移动,形成电流.半导体晶体的内部结构相比之下就牢固得多,特别是体现在原子核对其外层电子的作用力较强,当电子离开原子核的时候,原子核对电子原来的作用力就在原先电子存在处形成了"力量真空",就是我们所说的空穴.而金属的力量相比之下小得多,当失去电子之后就不能认为出现了"力量真空”。所以,只有在描述半导体导电原理是才引入“空穴”这个概念(清华资源)
本征半导体与参杂半导体有什么不同?本征半导体是c纯净的半导体。在本征半导体中参入微量杂质元素可提高半导体的导电能力,参杂后的半导体称为杂质半导体。根据参入杂质的不同可分为N型半导体和P型半导体。
本征半导体费米能级位于导带底和价带顶之间的中线上,导带中的自由电子和价带中的空穴均很少,因此常温下导电能力低,但在光和热的激励下导电能力增强。
n型掺杂半导体的费米能级接近导带底,导带中的自由电子数高于本征半导体,导电能力随掺杂浓度提高而增强,属于电子导电为主的半导体。
p型掺杂半导体的费米能级接近价带顶,价带中的空穴数高于本征半导体,导电能力随掺杂浓度提高而增强,属于空穴导电为主的半导体。
半导体有什么用处半导体的导电效能介于导体和绝缘体之间,不掺杂的半导体(也叫本征半导体)的导电效能很差,但掺杂后的半导体就有一定的导电效能了,例如在Si半导体中掺杂P或者B等杂质就可以使半导体变成N型或P型半导体。N型半导体中电子是多数载流子,而P型半导体中空穴是多数载流子。
半导体制成的PN接面具有单向导电特性,但当PN接面两端加上足够大的反向电压时,PN接面会反向击穿,这时的电压叫做反向击穿电压。利用反向击穿特性,可以制成稳压二极体,利用正向特性,可以制成整流或检波二极体。
半导体的用途太多了,一句两句很难将清楚,这里就先介绍这些了。
半导体有什么用?自然界的物质按导电能力可分为导体、绝缘体和半导体三类。半导体材料是指室温下导电性介于导电材料和绝缘材料之间的一类功能材料。靠电子和空穴两种载流子实现导电,室温时电阻率一般在10-5~107欧·米之间。通常电阻率随温度升高而增大;若掺入活性杂质或用光、射线辐照,可使其电阻率有几个数量级的变化。1906年制成了碳化矽检波器。
1947年发明电晶体以后,半导体材料作为一个独立的材料领域得到了很大的发展,并成为电子工业和高技术领域中不可缺少的材料。特性和引数半导体材料的导电性对某些微量杂质极敏感。纯度很高的半导体材料称为本征半导体,常温下其电阻率很高,是电的不良导体。在高纯半导体材料中掺入适当杂质后,由于杂质原子提供导电载流子,使材料的电阻率大为降低。这种掺杂半导体常称为杂质半导体。杂质半导体靠导带电子导电的称N型半导体,靠价带空穴导电的称P型半导体。
不同型别半导体间接触(构成PN接面)或半导体与金属接触时,因电子(或空穴)浓度差而产生扩散,在接触处形成位垒,因而这类接触具有单向导电性。利用PN接面的单向导电性,可以制成具有不同功能的半导体器件,如二极体、三极体、闸流体等。
此外,半导体材料的导电性对外界条件(如热、光、电、磁等因素)的变化非常敏感,据此可以制造各种敏感元件,用于资讯转换。半导体材料的特性引数有禁频宽度、电阻率、载流子迁移率、非平衡载流子寿命和位错密度。禁频宽度由半导体的电子态、原子组态决定,反映组成这种材料的原子中价电子从束缚状态激发到自由状态所需的能量。电阻率、载流子迁移率反映材料的导电能力。非平衡载流子寿命反映半导体材料在外界作用(如光或电场)下内部载流子由非平衡状态向平衡状态过渡的弛豫特性。位错是晶体中最常见的一类缺陷。位错密度用来衡量半导体单晶材料晶格完整性的程度,对于非晶态半导体材料,则没有这一引数。半导体材料的特性引数不仅能反映半导体材料与其他非半导体材料之间的差别,更重要的是能反映各种半导体材料之间甚至同一种材料在不同情况下,其特性的量值差别。
为什么要将半导体变成导电性很差的本征半导体只有纯净的本征半导体,才可能按设计者的需要制造出需要的器件。 如果有杂质,电晶体就无法实现可控的或关断。
南京派光信息单频半导体窄线宽激光器产品基于航天器的高精度驱动温控电路,对DFB半导体激光器进行控制,可实现超窄的输出光谱线宽(典型值300kHz),和出色的边模抑制比(SMSR)。具体参数:
参数名称
参数规格
中心波长
1000nm到1550nm之间
波长重复精度
<10pm
调谐范围
>50GHz,无跳模
激光线宽
外控连续调谐,~20GHz/V(视种子波长而定)
温度调谐
外控连续调谐,调谐范围大于1000GHz
边频调制
10MHz~150MHz,可用于稳频,锁腔等 *** 作
激光线宽
单频输出(线宽小于5MHz),1小时内无跳模,根据用户需求,可以压窄线宽至300kHz左右
偏振输出
偏振比>100:1
输出光纤种类
PM980或PM1550光纤
输出功率
1mW〜100mW
注:以上规格为标准配置,可根据客户具体需求,提供定制产品。
半导体热敏电阻的基本特性是它的温度特性,而这种特性又是与半导体材料的导电机制密切相关的。由于半导体中的载流子数目随温度升高而按指数规律迅速增加。温度越高,载流子的数目越多,导电能力越强,电阻率也就越小。因此热敏电阻随着温度的升高,它的电阻将按指数规律迅速减小。热敏半导体陶瓷材料就是利用它的电阻、磁性、介电性等性质随温度而变化,用它作成的器件可作为温度的测定、线路温度补偿及稳频等,且具有灵敏度高、稳定性好、制造工艺简单及价格便宜等特点。 按照热敏陶瓷的电阻-温度特性,一般可分为三大类:1电阻随温度升高而增大的热敏电阻称为正温度系数热敏电阻,简称PTC热敏电阻;2电阻随温度的升高而减少的热敏电阻称为负温度系数热敏电阻,简称NTC热敏电阻;3电阻在某特定温度范围内急剧变化的热敏电阻,简称为CTR临界温度热敏电阻。欢迎分享,转载请注明来源:内存溢出
评论列表(0条)