SiN是什么化学物质

SiN是什么化学物质,第1张

半导体SIN是 氮化硅它有两种晶体, 即低温型α-氮化硅和高温型β-氮化硅,及一种无定型。当粉状的 Si3N4在1200℃加热超过4h,就形成 α-型,在1450℃加热2h,就形成β-型。α-型为六方晶系结晶;β-型为立方晶系结晶。纯者为无色,但通常所见为含微量杂质者,呈灰色、灰褐色或黑色。相对分子质量140.29。相对密度 3.44。本品不溶于水、酸、碱。

太阳能电池是PV发电系统中最核心的器件,节能是利用光电转换原理使太阳的辐射光通过半导体物质转变为电能的一种器件,这种光电转换过程通常叫做“光生伏打效应”,因此太阳电池又称为“光伏电池”,用于太阳电池的半导体材料是一种介于导体和绝缘体之间的特殊物质。

科学家为了降低太阳电池的制造成本,沿着2条路径:一条是开发新颖的太阳电池的材料,另一条路径就是提高太阳电池自身的转换效率。将取之不尽的阳光转换成为为人类造福的电能,最核心的技术就是太阳电池的光电转换率。

制造太阳电池的半导体材料已知的有十几种,因此太阳电池的种类也很多。目前,技术最成熟,并具有商业价值的、市场应用最广的太阳电池是硅太阳电池。

硅太阳能电池制造工艺流程图

1、 硅片切割,材料准备:

工业制作硅电池所用的单晶硅材料,一般采用坩锅直拉法制的太阳级单晶硅棒,原始的形状为圆柱形,然后切割成方形硅片(或多晶方形硅片),硅片的边长一般为10~15cm,厚度约200~350um,电阻率约1Ω.cm的p型(全球节能环保网掺硼)。

2、 去除损伤层:

硅片在切割过程会产生大量的表面缺陷,这就会产生两个问题,首先表面的质量较差,另外这些表面缺陷会在电池制造过程中导致碎片增多。因此要将切割损伤层去除,一般采用碱或酸腐蚀,腐蚀的厚度约10um。

3、 制绒:

制绒,就是把相对光滑的原材料硅片的表面通过酸或碱腐蚀,使其凸凹不平,变得粗糙,形成漫反射,减少直射到硅片表面的太阳能的损失。对于单晶硅来说一般采用NaOH加醇的方法腐蚀,利用单晶硅的各向异性腐蚀,在表面形成无数的金字塔结构,碱液的温度约80度,浓度约1~2%,腐蚀时间约15分钟。对于多晶来说,一般采用酸法腐蚀。

4、 扩散制结:

扩散的目的在于形成PN结。普遍采用磷做n型掺杂。由于固态扩散需要很高的温度,因此在扩散前硅片表面的洁净非常重要,要求硅片在制绒后要进行清洗,即用酸来中和硅片表面的碱残留和金属杂质。

5、 边缘刻蚀、清洗:

扩散过程中,在硅片的周边表面也形成了扩散层。周边扩散层使电池的上下电极形成短路环,必须将它除去。周边上存在任何微小的局部短路都会使电池并联电阻下降,以至成为废品。目前,工业化生产用等离子干法腐蚀,在辉光放电条件下通过氟和氧交替对硅作用,去除含有扩散层的周边。

扩散后清洗的目的是去除扩散过程中形成的磷硅玻璃。

6、 沉积减反射层:

沉积减反射层的目的在于减少表面反射,增加折射率。广泛使用PECVD淀积SiN ,由于PECVD淀积SiN时,不光是生长SiN作为减反射膜,同时生成了大量的原子氢,这些氢原子能对多晶硅片具有表面钝化和体钝化的双重作用,可用于大批量生产。

7、 丝网印刷上下电极:

电极的制备是太阳电池制备过程中一个至关重要的步骤,它不仅决定了发射区的结构,而且也决定了电池的串联电阻和电池表面被金属覆盖的面积。最早采用真空蒸镀或化学电镀技术,而现在普遍采用丝网印刷法,即通过特殊的印刷机和模版将银浆铝浆(银铝浆)印刷在太阳电池的正背面,以形成正负电极引线。

8、 共烧形成金属接触:

晶体硅太阳电池要通过三次印刷金属浆料,传统工艺要用二次烧结才能形成良好的带有金属电极欧姆接触,共烧工艺只需一次烧结,同时形成上下电极的欧姆接触。在太阳电池丝网印刷电极制作中,通常采用链式烧结炉进行快速烧结。

9、 电池片测试:

完成的电池片经过测试分档进行归类。

半导体

什么是半导体呢?

顾名思义:导电性能介于导体与绝缘体(insulator)之间的材料,叫做半导体(semiconductor).

物质存在的形式多种多样,固体、液体、气体、等离子体等等。我们通常把导电性和导电导热性差或不好的材料,如金刚石、人工晶体、琥珀、陶瓷等等,称为绝缘体。而把导电、导热都比较好的金属如金、银、铜、铁、锡、铝等称为导体。可以简单的把介于导体和绝缘体之间的材料称为半导体。与金属和绝缘体相比,半导体材料的发现是最晚的,直到20世纪30年代,当材料的提纯技术改进以后,半导体的存在才真正被学术界认可。

半导体的发现实际上可以追溯到很久以前,

1833年,英国巴拉迪最先发现硫化银的电阻随着温度的变化情况不同于一般金属,一般情况下,金属的电阻随温度升高而增加,但巴拉迪发现硫化银材料的电阻是随着温度的上升而降低。这是半导体现象的首次发现。不久,

1839年法国的贝克莱尔发现半导体和电解质接触形成的结,在光照下会产生一个电压,这就是后来人们熟知的光生伏特效应,这是被发现的半导体的第二个特征。

在1874年,德国的布劳恩观察到某些硫化物的电导与所加电场的方向有关,即它的导电有方向性,在它两端加一个正向电压,它是导通的;如果把电压极性反过来,它就不导电,这就是半导体的整流效应,也是半导体所特有的第三种特性。同年,舒斯特又发现了铜与氧化铜的整流效应。

1873年,英国的史密斯发现硒晶体材料在光照下电导增加的光电导效应,这是半导体又一个特有的性质。

半导体的这四个效应,(jianxia霍尔效应的余绩——四个伴生效应的发现)虽在1880年以前就先后被发现了,但半导体这个名词大概到1911年才被考尼白格和维斯首次使用。而总结出半导体的这四个特性一直到1947年12月才由贝尔实验室完成。很多人会疑问,为什么半导体被认可需要这么多年呢?主要原因是当时的材料不纯。没有好的材料,很多与材料相关的问题就难以说清楚。

半导体于室温时电导率约在10ˉ10~10000/Ω·cm之间,纯净的半导体温度升高时电导率按指数上升。半导体材料有很多种,按化学成分可分为元素半导体和化合物半导体两大类。锗和硅是最常用的元素半导体;化合物半导体包括Ⅲ-Ⅴ 族化合物(砷化镓、磷化镓等)、Ⅱ-Ⅵ族化合物( 硫化镉、硫化锌等)、氧化物(锰、铬、铁、铜的氧化物),以及由Ⅲ-Ⅴ族化合物和Ⅱ-Ⅵ族化合物组成的固溶体(镓铝砷、镓砷磷等)。除上述晶态半导体外,还有非晶态的有机物半导体等。

本征半导体(intrinsic semiconductor) 没有掺杂且无晶格缺陷的纯净半导体称为本征半导体。在绝对零度温度下,半导体的价带(valence band)是满带(见能带理论),受到光电注入或热激发后,价带中的部分电子会越过禁带(forbidden band/band gap)进入能量较高的空带,空带中存在电子后成为导带(conduction band),价带中缺少一个电子后形成一个带正电的空位,称为空穴(hole),导带中的电子和价带中的空穴合称为电子 - 空穴对。上述产生的电子和空穴均能自由移动,成为自由载流子(free carrier),它们在外电场作用下产生定向运动而形成宏观电流,分别称为电子导电和空穴导电。这种由于电子-空穴对的产生而形成的混合型导电称为本征导电。导带中的电子会落入空穴,使电子-空穴对消失,称为复合(recombination)。复合时产生的能量以电磁辐射(发射光子photon)或晶格热振动(发射声子phonon)的形式释放。在一定温度下,电子 - 空穴对的产生和复合同时存在并达到动态平衡,此时本征半导体具有一定的载流子浓度,从而具有一定的电导率。加热或光照会使半导体发生热激发或光激发,从而产生更多的电子 - 空穴对,这时载流子浓度增加,电导率增加。半导体热敏电阻和光敏电阻等半导体器件就是根据此原理制成的。常温下本征半导体的电导率较小,载流子浓度对温度变化敏感,所以很难对半导体特性进行控制,因此实际应用不多。

杂质半导体(extrinsic semiconductor) 半导体中的杂质对电导率的影响非常大,本征半导体经过掺杂就形成杂质半导体,一般可分为n型半导体和p型半导体。半导体中掺入微量杂质时,杂质原子附近的周期势场受到干扰并形成附加的束缚状态,在禁带中产生附加的杂质能级。能提供电子载流子的杂质称为施主(donor)杂质,相应能级称为施主能级,位于禁带上方靠近导带底附近。例如四价元素锗或硅晶体中掺入五价元素磷、砷、锑等杂质原子时,杂质原子作为晶格的一分子,其五个价电子中有四个与周围的锗(或硅)原子形成共价键,多余的一个电子被束缚于杂质原子附近,产生类氢浅能级-施主能级。施主能级上的电子跃迁到导带所需能量比从价带激发到导带所需能量小得多,很易激发到导带成为电子载流子,因此对于掺入施主杂质的半导体,导电载流子主要是被激发到导带中的电子,属电子导电型,称为n型半导体。由于半导体中总是存在本征激发的电子空穴对,所以在n型半导体中电子是多数载流子,空穴是少数载流子。相应地,能提供空穴载流子的杂质称为受主(acceptor)杂质,相应能级称为受主能级,位于禁带下方靠近价带顶附近。例如在锗或硅晶体中掺入微量三价元素硼、铝、镓等杂质原子时,杂质原子与周围四个锗(或硅)原子形成共价结合时尚缺少一个电子,因而存在一个空位,与此空位相应的能量状态就是受主能级。由于受主能级靠近价带顶,价带中的电子很容易激发到受主能级上填补这个空位,使受主杂质原子成为负电中心。同时价带中由于电离出一个电子而留下一个空位,形成自由的空穴载流子,这一过程所需电离能比本征半导体情形下产生电子空穴对要小得多。因此这时空穴是多数载流子,杂质半导体主要靠空穴导电,即空穴导电型,称为p型半导体。在p型半导体中空穴是多数载流子,电子是少数载流子。在半导体器件的各种效应中,少数载流子常扮演重要角色。

编辑词条

开放分类:

技术、电子、半导体物理

参考资料:

1.Introduction to Solid State Physics - by Charles Kittle

半导体应用:

硅是集成电路产业的基础,半导体材料中98%是硅,半导体硅工业产品包括多晶硅、单晶硅(直拉和区熔)、外延片和非晶硅等,其中,直拉硅单晶广泛应用于集成电路和中小功率器件。区域熔单晶目前主要用于大功率半导体器件,比如整流二极管,硅可控整流器,大功率晶体管等。单晶硅和多晶硅应用最广。

中彰国际(SINOSI)是一家致力于尖端科技、开拓创新的公司。中彰国际(SINOSI)能够规模生产和大批量供应单晶硅、多晶硅及Φ4〃- Φ6〃直拉抛光片、 Φ3〃- Φ6〃直拉磨片和区熔NTD磨片并且可以按照国内、外客户的要求提供非标产品。

单晶硅

单晶硅主要有直拉和区熔

区熔(NTD)单晶硅可生产直径范围为:Φ1.5〃- Φ4〃。直拉单晶硅可生产直径范围为:Φ2〃-Φ8〃。

各项参数可按客户要求生产。

多晶硅

区熔用多晶硅:可生产直径Φ40mm-Φ70mm。直径公差(Tolerance)≤10%,施主水平>300Ω.㎝,受主水平>3000Ω.㎝,碳含量<2×1016at/㎝3 。各项参数可按客户要求生产。

切磨片

切磨片可生产直径范围为:Φ1.5〃- Φ6〃。厚度公差、总厚度公差、翘曲度、电阻率等参数符合并优于国家现行标准,并可按客户要求生产。

抛光片

抛光片可生产直径范围为:Φ2〃- Φ6〃,厚度公差、总厚度公差、翘曲度、平整度、电阻率等参数符合并优于国家现行标准,并可按客户要求生产。

高纯的单晶硅棒是单晶硅太阳电池的原料,硅纯度要求99.999%。单晶硅太阳电池是当前开发得最快的一种太阳电池,它的构和生产工艺已定型,产品已广泛用于空间和地面。为了降低生产成本,现在地面应用的太阳电池等采用太阳能级的单晶硅棒,材料性能指标有所放宽。有的也可使用半导体器件加工的头尾料和废次单晶硅材料,经过复拉制成太阳电池专用的单晶硅棒。

单晶硅是转化太阳能、电能的主要材料。在日常生活里,单晶硅可以说无处不在,电视、电脑、冰箱、电话、汽车等等,处处离不开单晶硅材料;在高科技领域,航天飞机、宇宙飞船、人造卫星的制造,单晶硅同样是必不可少的原材料。

在科学技术飞速发展的今天,利用单晶硅所生产的太阳能电池可以直接把太阳能转化为光能,实现了迈向绿色能源革命的开始。现在,国外的太阳能光伏电站已经到了理论成熟阶段,正在向实际应用阶段过渡,太阳能单晶硅的利用将普及到全世界范围,市场需求量不言而喻。

直拉硅单晶广泛应用于集成电路和中小功率器件。区域熔单晶目前主要用于大功率半导体器件,比如整流二极管,硅可控整流器,大功率晶体管等。

区熔(NTD)单晶硅可生产直径范围为:Φ1.5〃- Φ4〃。

直拉单晶硅可生产直径范围为:Φ2〃-Φ8〃。

硅单晶被称为现代信息社会的基石。硅单晶按照制备工艺的不同可分为直拉(CZ)单晶硅和区熔(FZ)单晶硅,直拉单晶硅被广泛应用于微电子领域,微电子技术的飞速发展,使人类社会进入了信息化时代,被称为硅片引起的第一次革命。区熔单晶硅是利用悬浮区熔技术制备的单晶硅。它的用途主要包括以下几个方面。

1、制作电力电子器件

电力电子技术是实现电力管理,提高电功效率的关键技术。飞速发展的电力电子被称为“硅片引起的第二次革命”,大多数电力电子器件是用区熔单晶硅制作的。电力电子器件包括普通晶闸管(SCR)、电力晶体管GTR、GTO以及第三代新型电力电子器件——功率场效应晶体管(MOSFET)和绝缘栅双极晶体管(IGBT)以及功率集成电路(PIC)等,广泛应用于高压直流输电、静止无功补偿、电力机车牵引、交直流电力传动、电解、励磁、电加热、高性能交直流电源等电力系统和电气工程中。制作电力电子器件,是区熔单晶硅的传统市场,也是本项目产品的市场基础。

2、制作高效率太阳能光伏电池

太阳能目前已经成为最受关注的绿色能源产业。美国、欧洲、日本都制定了大力促进本国太阳能产业发展的政策,我国也于2005年3月份通过了《可再生能源法》。这些措施极大地促进了太阳能电池产业的发展。据统计,从1998—2004年,国际太阳能光伏电池的市场一直保持高速增长的态势,年平均增长速度达到30%,预计到2010年,仍将保持至少25%的增长速度。

晶体硅是目前应用最成熟,最广泛的太阳能电池材料,占光伏产业的85%以上。美国SunPower公司最近开发出利用区熔硅制作太阳能电池技术,其产业化规模光电转换效率达到20%,为目前产业化最高水平,其综合性价比超过直拉单晶硅太阳能电池(光电转换效率为15%)和多晶硅太阳能电池(光电转换效率为12%)。这项新技术将会极大地扩展区熔硅单晶的市场空间。据估计,到2010年,其总的市场规模到将达到电力电子需求规模,这是本项目新的市场机会。

3、制作射频器件和微电子机械系统(MEMS)

区熔单晶还可以用来制作部分分立器件。另外采用高阻区熔硅制造微波单片集成电路(MMIC)以及微电子机械系统(MEMS)等高端微电子器件,被广泛应用于微波通讯、雷达、导航、测控、医学等领域,显示出巨大的应用前景。这也是区熔单晶的又一个新兴的市场机会。

4、制作各种探测器、传感器,远红外窗口

探测器、传感器是工业自动化的关键元器件,被广泛应用于光探测、光纤通讯、工业自动化控制系统中以及医疗、军事、电讯、工业自动化等领域。高纯的区熔硅单晶是制作各种探测器、传感器的关键原材料,其市场增长趋势也很明显。

图片参考:

http://www.sinosi.com/chinese/Products%20Gallcry/Semi-Silica/Semi-Conductor%20Silicon.htm

http://www.istis.sh.cn/list/list.asp?id=2214


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/8703210.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-20
下一篇 2023-04-20

发表评论

登录后才能评论

评论列表(0条)

保存