半导体硅片工艺中有一个是 RCA cleaning 是什么意思?

半导体硅片工艺中有一个是 RCA cleaning 是什么意思?,第1张

RCA cleaning 就是采用RCA方法来清洗的意思。RCA是一种典型的、普遍使用的湿式化学清洗法,该清洗法主要包括以下几种清洗液: (1)SPM:H2SO4 /H2O2 120~150℃ SPM具有很高的氧化能力,可将金属氧化后溶于清洗液中,并能把有机物氧化生成CO 2和H2O。用SPM清洗硅片去除硅片表面的重有机沾污和部分金属,但是当有机物沾污特别严重时会使有机物碳化而难以去除。 (2)HF(DHF):HF(DHF) 20~25℃ DHF可以去除硅片表面的自然氧化膜,因此,附着在自然氧化膜上的金属将被溶解到清洗液中,同时DHF抑制了氧化膜的形成。因此可以很容易地去除硅片表面的Al,Fe,Zn,Ni等金属,DHF也可以去除附着在自然氧化膜上的金属氢氧化物。用DHF清洗时,在自然氧化膜被腐蚀掉时,硅片表面的硅几乎不被腐蚀。 (3)APM (SC-1):NH4OH/H2O2 /H2O 30~80℃ 由于H2O2的作用,硅片表面有一层自然氧化膜(SiO2),呈亲水性,硅片表面和粒子之间可被清洗液浸透。由于硅片表面的自然氧化层与硅片表面的Si被NH 4OH腐蚀,因此附着在硅片表面的颗粒便落入清洗液中,从而达到去除粒子的目的。在 NH4OH腐蚀硅片表面的同时,H2O 2又在氧化硅片表面形成新的氧化膜。 (4)HPM (SC-2):HCl/H2O2/H2 O 65~85℃ 用于去除硅片表面的钠、铁、镁等金属沾污。在室温下HPM就能除去Fe和Zn。 清洗的一般思路是首先去除硅片表面的有机沾污,因为有机物会遮盖部分硅片表面,从而使氧化膜和与之相关的沾污难以去除;然后溶解氧化膜,因为氧化层是“沾污陷阱”,也会引入外延缺陷;最后再去除颗粒、金属等沾污,同时使硅片表面钝化。

清洗方法 (一)RCA清洗: RCA 由Werner Kern 于1965年在N.J.Princeton 的RCA 实验室首创, 并由此得名。RCA 清洗是一种典型的湿式化学清洗。RCA 清洗主要用于清除有机表面膜、粒子和金属沾污。 1、颗粒的清洗 硅片表面的颗粒去除主要用APM ( 也称为SC1) 清洗液(NH4OH + H2O2 + H2O) 来清洗。在APM 清洗液中,由于H2O2的作用,硅片表面有一层自然氧化膜(SiO2) , 呈亲水性, 硅片表面和粒子之间可用清洗液浸透, 硅片表面的自然氧化膜和硅被NH4OH 腐蚀,硅片表面的粒子便落入清洗液中。粒子的去除率与硅片表面的腐蚀量有关, 为去除粒子,必须进行一定量的腐蚀。在清洗液中, 由于硅片表面的电位为负, 与大部分粒子间都存在排斥力, 防止了粒子向硅片表面吸附。 表2常用的化学清洗溶液 名称 组成 作用 SPM H2SO4∶H2O2∶H2O 去除重有机物沾污。但当沾污非常严重时, 会使有机物碳化而难以去除 DHF HF∶(H2O2)∶H2O 腐蚀表面氧化层, 去除金属沾污 APM(SC1) NH4OH∶H2O2∶H2O 能去除粒子、部分有机物及部分金属。此溶液会增加硅片表面的粗糙度 HPM(SC2) HCl∶(H2O2)∶H2O 主要用于去除金属沾污 2、表面金属的清洗 (1) HPM (SC22) 清洗 (2) DHF清洗 硅片表面的金属沾污有两种吸附和脱附机制: (1) 具有比硅的负电性高的金属如Cu ,Ag , Au , 从硅表面夺取电子在硅表面直接形成化学键。具有较高的氧化还原电位的溶液能从这些金属获得电子, 从而导致金属以离子化的形式溶解在溶液中, 使这种类型的金属从硅片表面移开。(2) 具有比硅的负电性低的金属, 如Fe , Ni ,Cr , Al , Ca , Na , K能很容易地在溶液中离子化并沉积在硅片表面的自然氧化膜或化学氧化膜上。这些金属在稀HF 溶液中能随自然氧化膜或化学氧化膜容易地除去。 3、有机物的清洗 硅片表面有机物的去除常用的清洗液是SPM。SPM 具有很高的氧化能力, 可将金属氧化后溶于溶液中, 并能把有机物氧化生成CO2 和水。SPM 清洗硅片可去除硅片表面的重有机沾污和部分金属,但是当有机物沾污较重时会使有机物碳化而难以去除。经SPM 清洗后, 硅片表面会残留有硫化物,这些硫化物很难用去粒子水冲洗掉。 (二)气相干洗 气相干洗是在常压下使用HF 气体控制系统的湿度。先低速旋转片子, 再高速使片子干燥, HF 蒸气对由清洗引起的化学氧化膜的存在的工艺过程是主要的清洗方法。另一种方法是在负压下使HF 挥发成雾。低压对清洗作用控制良好,可挥发反应的副产品, 干片效果比常压下好。并且采用两次负压过程的挥发, 可用于清洗较深的结构图形, 如对沟槽的清洗。 MMST工程 主要目标是针对高度柔性的半导体制造业而开发具有快速周期的工艺和控制方法。能够通过特定化学元素以及成分直接对硅片表面进行清理,避免了液体带来的成分不均匀和废液的回收问题,同时节约了成本。 1、氧化物去除: 用气相HF/水汽去除氧化物,所有的氧化物被转变为水溶性残余物, 被水溶性去除。绕开了颗粒清除过程,提高了效率。 2、金属化后的腐蚀残余物去除: 气相HF/氮气工艺用于去除腐蚀残余物,且金属结构没有被钻蚀。这个工艺避免了昂贵而危险的溶剂的使用, 对开支、健康、安全和环境等因素都有积极的影响。 3、氮化硅和多晶硅剥离: 在远离硅片的一个陶瓷管中的微波放电产生活性基, 去除硅片上的氮化硅和多晶硅, 位于陶瓷管和硅片之间的一块挡板将气体分散并增强工艺的均匀性, 剥离工艺使用NF3,Cl2,N2和O2的组合分别地去除Si3N4, 然后去除多晶硅。 4、炉前清洗: 用气相HF/HCl气体进行炉前清洗并后加一个原位水冲洗过程, 金属粒子的沾污被去除到了总反射X射线荧光光谱学(XRF)的探测极限范围之内。 5、金属化前,等离子腐蚀后和离子注入后胶的残余物去除: 臭氧工艺以及气相HF/氮气工艺还需进一步的改进才能应用。但是有一种微剥离工艺,用SC1/超声过程去除最后的颗粒。

随着现代科学技术的发展,特别是光电子技术的发展,现代武器装备的精 度和性能有了很大的提高,使现代战争具备了新的特点。 半导体光探测器是军用 光电子设备和系统的关键器件,已广泛用于军事领域。 军用光电子装备是指利用 半导体光探测器探测、变换、传输、存储等技术,所以制备半导体器件的要求 必定将越来越高,本论文就将讨论半导体在制作上的电学杂质和玷污。1. 半导体电学杂质与玷污的涵义 在制作半导体器件中,为了综合利益与效率以及各方面因素,需要人为地加 入某种元素以改变半导体的导电性能,这个过程称为电学杂质;玷污是指在制作 半导体器件的过程中,外界环境没有严格控制好,导致空气中有杂质混入,从而 使得该器件导电等方面的性能下降。2. 半导体电学杂质 半导体晶格中存在的与其基体不同的其他化学元素原子。 杂质的存在使严格 按周期性排列的原子所产生的周期性势场受到破坏, 这对半导体材料的性质产生 决定性的影响。杂质元素在半导体材料中的行为取决于它在半导体材料中的状1 态,同一种杂质处于间隙态或代位态,其性质也会不同。电活性杂质在半导体材 料的禁带中占有一个或几个位置作为杂质能级。 按照杂质在半导体材料中的行为 可分为施主杂质、受主杂质和电中性杂质。按照杂质电离能的大小可分为浅能级 杂质和深能级杂质。浅能级杂质对半导体材料导电性质影响大,而深能级杂质对 少数载流子的复合影响更显著。氧、氮、碳在半导体材料中的行为比较复杂,所 起的作用与金属杂质不同,以硅和砷化镓为例叙述杂质的行为。 在纯净的半导体中加入微量(千万分之一)的其它元素(这个过程我们称为 掺杂) ,可使他的导电能力提高百万倍。这是半导体的最初的特征。例如在原子 密度为 5x1022/立方厘米的硅中掺进大约 5x1015/立方厘米磷原子,比例为 10-7 (即千万分之一) ,硅的导电能力提高了几十万倍。 物质是由原子构成的,而原子是由原子核和围绕它运动的电子组成的。电子 很轻、很小,带负电,在一定的轨道上运转;原子核带正电,电荷量与电子的总 电荷量相同,两者相互吸引。当原子的外层电子缺少后,整个原子呈现正电,缺 少电子的地方产生一个空位,带正电,成为电洞。物体导电通常是由电子和电洞 导电。 前面提到掺杂其它元素能改变半导体的导电能力, 而参与导电的又分为电子 和电洞,这样掺杂的元素(即杂质)可分为两种:施主杂质与受主杂质。. {7 V/ G1 将施主杂质加到硅半导体中后,他与邻近的 4 个硅原子作用,产生许多自由 电子参与导电,而杂质本身失去电子形成正离子,但不是电洞,不能接受电子。 这时的半导体叫 N 型半导体。施主杂质主要为五族元素:锑、磷、砷等。 将施主杂质加到半导体中后,他与邻近的 4 个硅原子作用,产生许多电洞参 与导电,这时的半导体叫 p 型半导体。受主杂质主要为三族元素:铝、镓、铟、 硼等。4 H 电洞和电子都是载子,在相同大小的电场作用下,电子导电的速度比 电洞快。电洞和电子运动速度的大小用迁移率来表示,迁移率愈大,截流子运动 速度愈快。 假如把一些电洞注入到一块 N 型半导体中, 型就多出一部分少数载子―― N 电洞,但由于 N 型半导体中有大量的电子存在,当电洞和电子碰在一起时,会 发生作用,正负电中和,这种现象称为复合。2 3.半导体玷污微粒的大小要小于器件上最小的特征图形尺寸的 1/10 倍 1。 直径为 0.03 微米的微粒将会损害 0.3 微米线宽大小的特征图形。落于器件的关键部位 并毁坏了器件功能的微粒被称为致命缺陷。致命缺陷还包括晶体缺陷和其 它由于工艺过程引入带来的问题。在任何晶片上,都存在大量的微粒。有 些属于致命性的,而其它一些位于器件不太敏感的区域则不会造成器件缺 陷。 半导体器件在整个晶片上 N 型和 P 型的掺杂区域以及在精确的 N/P 相 邻区域,都需要具有可控的电阻率。通过在晶体和晶片上有目的地掺杂特 定的掺杂离子来实现对这三个性质的控制。非常少量的掺杂物即可实现我 们希望的效果。但遗憾的是,在晶片中出现的极少量的具有电性的污染物 也会改变器件的典型特征,改变它的工作表现和可靠性参数。 可以引起上述问题的污染物称为可移动离子污染物 (MICs) 。它们是在材 料中以离子形态存在的金属离子。而且,这些金属离子在半导体材料中具 有很强的可移动性。也就是说,即便在器件通过了电性能测试并且运送出 去,金属离子仍可在器件中移动从而造成器件失效。遗憾的是,能够在硅 器件中引起这些问题的金属存在于绝大部分的化学物质中。每 10 亿个单位 中的金属含量 (ppb) 杂质钠 50 钾 50 铁 50 铜 60 镍 60 铝 60 镁 60 铅 60 锌 60 氯 1000 钠是在未经处理的化学品中最常见的可移动离子污染物,同时也是硅 中移动性最强的物质。因此,对钠的控制成为硅片生产的首要目标。MIC 的 问题在 MOS 器件中表现最为严重,这一事实促使一些化学品生产商研制开 发 MOS 级或低钠级的化学品。这些标识都意味着较低的可移动污染物的等 级。 在半导体工艺领域第三大主要的污染物是不需要的化学物质。工艺过 程中所用的化学品和水可能会受到对芯片工艺产生影响的痕量物质的污 染。它们将导致晶片表面受到不需要的刻蚀,在器件上生成无法除去的化 合物,或者引起不均匀的工艺过程。氯就是这样一种污染物,它在工艺过 程中用到的化学品中的含量受到严格的控制。3 细菌是第四类的主要污染物。细菌是在水的系统中或不定期清洗的表面生 成的有机物。细菌一旦在器件上形成,会成为颗粒状污染物或给器件表面 引入不希望见到的金属离子。4. 电学杂质与玷污的关系 实际的半导体都不是绝对完整和纯净的晶体。一方面为了控制半导体 的性质,往往有意在半导体中掺进某些杂质元素;另一方面,在半导体中 还不可避免地存在由于原材料或制备过程引入的各种杂质。而且,材料制 备的高温过程还在半导体中引入空位和间隙原子等点缺陷,它们往往还要 进一步发生凝聚或与杂质原子聚合等变化,构成更为复杂的缺陷及络合体。 所有这些杂质和缺陷都可以对半导体的物理性质发生重要正面或者负面的 影响。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/8717647.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-20
下一篇 2023-04-20

发表评论

登录后才能评论

评论列表(0条)

保存