2020-02-08-2小刘科研笔记之FIB-SEM双束系统在材料研究中的应用

2020-02-08-2小刘科研笔记之FIB-SEM双束系统在材料研究中的应用,第1张

聚焦离子束扫描电镜双束系统(FIB-SEM)是在SEM的基础上增加了聚焦离子束镜筒的双束系统,同时具备微纳加工和成像的功能,广泛应用于科学研究和半导体芯片研发等多个领域。本文记录一下FIB-SEM在材料研究中的应用。

以目前实验室配有的FIB-SEM的型号是蔡司的Crossbeam 540为例进行如下分析,离子束最高成像分辨率为3nm,电子束最高分辨率为0.9nm。该系统的主要部件及功能如下:

1.离子束: 溅射(切割、抛光、刻蚀);刻蚀最小线宽10nm,切片最薄3nm。 

2.电子束 : 成像和实时观察

3.GIS(气体注入系统): 沉积和辅助刻蚀;五种气体:Pt、W、SiO2、Au、XeF2(增强刻蚀SiO2)

4.纳米机械手:  转移样品 

5.EDS: 成分定量和分布

6.EBSD : 微区晶向及晶粒分布

7.Loadlock(样品预抽室): 快速进样,进样时间只需~1min

由上述FIB-SEM的一个部件或多个部件联合使用,可以实现在材料研究中的多种应用,具体应用实例如下:

图2a和b分别是梳子形状的CdS微米线的光学显微镜和扫描电镜照片,从光学显微镜照片可以看出在CdS微米线节点处内部含有其他物质,但无法确定是什么材料和内部形貌。利用FIB-SEM在节点处定点切割截面,然后对截面成像和做EDS mapping,如图2c、d、e和f所示,可以很直观的得到在CdS微米线的节点处内部含有Sn球。

FIB-SEM制备TEM样品的常规步骤如图3所示,主要有以下几步:

1)在样品感兴趣位置沉积pt保护层

2)在感兴趣区域的两侧挖大坑,得到只有约1微米厚的薄片

3)对薄片进行U-cut,将薄片底部和一侧完全切断

4)缓慢移下纳米机械手,轻轻接触薄片悬空的一端后,沉积pt将薄片和纳米机械手焊接牢固,然后切断薄片另一侧,缓慢升起纳米机械手即可提出薄片

5)移动样品台和纳米机械手,使薄片与铜网(放置TEM样品用)轻轻接触,然后沉积pt将薄片和铜网焊接牢固,将薄片和纳米机械手连接的一端切断,移开纳米机械手,转移完成

6)最后一步为减薄和清洗,先用大加速电压离子束将薄片减薄至150nm左右,再利用低电压离子束将其减薄至最终厚度(普通TEM样品<100nm,高分辨TEM样品50nm左右,球差TEM样品<50nm)

一种如图4a所示的MoS2场效应管,需要确定实际器件中MoS2的层数及栅极(Ag纳米线)和MoS2之间的距离。利用FIB-SEM可以准确的在MoS2场效应管的沟道位置,垂直于Ag纳米线方向,提出一个薄片,并对其进行减薄,制备成截面透射样。在TEM下即可得到MoS2的层数为14层(图4c), Ag纳米线和MoS2之间的距离为30nm(图4b)。

图5是一种锰酸锂材料的STEM像,该样品是由FIB-SEM制备,图中可以看到清晰的原子像。这表明FIB-SEM制备的该球差透射样非常薄并且有很少的损伤层。

FIB-SEM还可以进行微纳图形的加工。

图6a 是FIB-SEM在Au/SiO2上制备的光栅,光栅周期为150nm,光栅开口为75nm。

图6b 是利用FIB-SEM在Mo/石英上做的切仑科夫辐射源针尖,针尖曲率半径为17nm。

图6c 是在Au膜上加工的三维对称结构蜘蛛网。

图6d 是FIB-SEM在硅上刻蚀的贺新年图案,图中最小细节尺寸仅有25nm。

FIB-SEM可以对材料进行切片式的形貌和成分三维重构,揭示材料的内部三维结构。大概过程如图7a所示, FIB切掉一定厚度的样品,SEM拍一张照片,重复此过程,连续拍上百张照片,然后将上百张切片照片重构出三维形貌。图7b是一种多孔材料内部3×5×2um范围的三维重构结果,其实验数据是利用FIB-SEM采集,三维重构是利用Avizo软件得到,其分辩率可达纳米级,展示了内部孔隙的三维空间分布,并可以计算出孔隙的半径大小、体积及曲率等参数。

利用FIB-SEM配有的纳米机械手及配合使用离子束沉积Pt,可以实现微米材料的转移,即把某种材料从一个位置(衬底)转移到特定位置(衬底),并固定牢固。图8是把四针氧化锌微米线从硅片转移到两电极的沟道之间,从而制备成两个微米线间距只有1um的特殊器件。

最后,FIB-SEM还有很多其他的应用,例如三维原子探针样品制备,芯片线路修改等。总之FIB-SEM是材料研究中一个非常重要的手段。

不积珪步,无以至千里;不积细流,无以成江海。做好每一份工作,都需要坚持不懈的学习。

1、EBSD测定的织构可以用多种形式表达出来,如极图、反极图、ODF等(见图5)。同X-ray衍射测织构相比,EBSD具有能测微区织构、选区织构并将晶粒形貌与晶粒取向直接对应起来的优点。另外,X射线测织构是通过测定衍射强度后反推出晶粒取向情况,计算精确度受选用的计算模型、各种参数设置的影响,一般测出的织构与实际情况偏差15%以上。而EBSD通过测定各晶粒的绝对取向后进行统计来测定织构,可以认为EBSD是目前测定织构最准确的手段。当然与X-ray比,EBSD存在制样麻烦等缺点。2、用EBSD同时测定两个相的晶体学取向时,可以确定两个相之间的晶体学关系。为了确定两相间的晶体学关系,一般需要测定30处以上两相各自的晶体学取向。并将所有测定结果同时投影在同一极射赤面投影图上进行统计,才能确立两相间的晶体学关系[3]。与透射电镜和X-ray相比,采用EBSD测定两相间晶体学取向关系具有显著的优越性。用于EBSD测试的样品表面平整、均匀,可以方便地找到30个以上两相共存的位置。同时晶粒取向可以用软件自动计算。而透射电镜由于样品薄区小的关系,难于在同一样品上找到30个以上两相共存位置。另外,其晶粒取向需手动计算。X-ray一般由于没有成像装置,难于准确将X-ray定位在所测定的位置上。3、另外,当第二相与基体间的惯习面、孪生面、滑移面等在样品表面留下迹线,尤其在两个以上晶粒表面留下迹线时,可以采用EBSD确定这些面的晶体学指数。

一般都是多晶体的单晶体是指样品中所含分子(原子或离子)在三维空间中呈规则、周期排列的一种固体状态。化学药物中的原料药(一般由单一成分组成)在合适的溶剂系统中经重结晶可得到适合X射线衍射使用的单晶样品,其大小约为0.5mm左右。例如:雪花、食盐小颗粒等。单晶体是半导体科学技术上的重要材料。晶体有三个特征:⑴晶体有一定的几何外形;⑵晶体有固定的熔点;⑶晶体有各向异性的特点。单晶体是原子排列规律相同,晶格位相一致的晶体。例如:单晶硅。、单晶体:整块晶体由一颗晶粒组成,或是能用一个空间点阵图形贯穿整个晶体。多晶体是由很多排列方式相同但位向不一致的小晶粒组成。例如:常用的金属。多晶体:整块晶体由大量晶粒组成,或是不能用一个空间点阵图形贯穿整个晶体。单晶体具有晶体的三个特征。多晶体具有前两项特征,但具有各向同性的特点。整个物体是由许多杂乱无章的排列着的小晶体组成的,这样的物体叫多晶体。一般来说多晶体是各向同性的,但单个小晶体仍是各向异性。自然界中物质的存在状态有三种:气态、液态、固态(此处指一般物质,未包括“第四态”等离子体)。固体又可分为两种存在形式:晶体和非晶体。晶体是经过结晶过程而形成的具有规则的几何外形的固体;晶体中原子或分子在空间按一定规律周期性重复的排列。从液态转变为固态的过程首先要成核,然后生长,这个过程叫晶粒的成核长大。晶粒内分子、原子都是有规则地排列的,所以一个晶粒就是单晶。多个晶粒,每个晶粒的大小和形状不同,而且取向也是凌乱的,没有明显的外形,也不表现各向异性,是多晶多晶体织构多晶体材料在制备、合成及加工等工艺过程形成择优取向,即各晶粒的取向朝一个或几个特定方向偏聚的现像,这种组织状态称为织构。如材料经拉拔、轧制、挤压、旋压等压力加工后,由于塑性变形中晶粒方位转动、变形而形成形变织构;退火后又产生不同冷加工状态的退火织构(或再结晶织构):铸造材料具有某些晶向垂直于模壁的组织特点,电镀、真空蒸镀、溅射等方法制备的薄膜材料也表现出特殊的择优取向。不仅金属、在陶瓷、天然岩石、天然和人造纤维材料中都存在织构,所以说择优取向在多晶材料中几乎是无所不在的。织构使多晶体材料的物理、力学、化学性能发生各向异性,这种性质有时是有害的,如冷轧钢板的择优取向使用它制成的冲压件出现“制耳”和厚度不均匀以致折皱的疵病;而有时又是有益的,如冷轧硅钢片经适当退火得到的“高斯织构”有利于减小磁损,织构还可以作为一些材料的强化方法加以利用。因而测定织构并给它一定的指标是材料研究的一个重要方面,多处来X射线衍射是揭示材料织构特征的主要方法。近年来背散射电子衍射(EBSD)法在结构测定上亦得到广泛应用。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/8721090.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-20
下一篇 2023-04-20

发表评论

登录后才能评论

评论列表(0条)

保存