两百年前,作为法拉第效应的诞生地,欧洲掀起了对半导体领域的狂热研究和实践。很长一段时间内,欧洲是半导体最发达的地区之一,西门子、飞利浦赫赫有名。
然而,两百年后,半导体世界风云变幻,鬼才频出。小到移动终端,大到数据中心,半导体材料,晶圆代工,市场越做越大,而以稳健著称的欧洲半导体企业却依旧停留在自己的原赛道上,稳健有余,亮点不足。
以大名鼎鼎的欧洲半导体三巨头:意法半导体、英飞凌和恩智浦为例,他们都专注于 汽车 电子产业(三家的 汽车 业务最多的超过了50%,最低的也高于40%)而错过了存储器、晶圆代工、智能手机芯片等高速发展的热门领域。这也是欧洲半导体行业的“特色”所在。 一方面,研究领域单一,另一方面又没有新的企业入局和迭代,这使得欧洲半导体的“格局”越来越小。
再看看几位“后来者”:
日韩 上世纪末集全国之力冲击存储器、手机芯片、半导体材料等领域,曾一段时间半路超车打破欧美的垄断局面,拿下不少的市场蛋糕,冲出了三星、东芝、SK海力士等如今响当当的名声。
中国台湾 台积电芯片代工世界第一,2019年市占率超50%,在先进制程代工、5G手机芯片领域无人能敌,而今年,由于疫情、中美贸易战等影响,包括台积电在内的台湾芯片代工业也必将产能爆满,营收翻番。
中国大陆 由于对半导体需求巨大,政策利好不断,虽仍存技术壁垒,但整体情形向好,半导体市场活力十足。
美国 早期借助贝尔实验室等扎实的科研力量在与欧洲的半导体理论较量上远胜一筹,后期更是成为半导体企业的千亿俱乐部,除了拥有英特尔、英伟达、高通、IBM、德州仪器、博通等市值超千亿的芯片企业,在IP领域也占据半壁江山,成为真正的芯片霸主。
然而,强悍如欧洲自然也不会坐以待毙。 昨天,欧盟委员会就发布了一项“2030年数位罗盘”规划 , 计划“到2030年,欧洲先进和可持续半导体的生产总值至少占全球生产总值的20%,生产能力冲刺2nm,能效达到今天的10倍。”
尽管如此,还是让人捏把汗。事实上,从上世纪八十年代起,欧洲曾发表过多项战略计划:ESPRIT(欧洲信息、技术研究发展战略计划)、RACE(欧洲先进通信技术研究开发计划)、JESSI(欧洲联合亚微米硅计划)等,自主可控也一直是众多计划所倡导的主旋律。
但在四十年后的今天,欧洲半导体市场却并未展现实现计划中所期待的半导体振兴。
据前瞻产业研究院数据,欧洲近年的全球市场份额都维持在10%左右(全球总量约为4400亿美元,欧洲约为440亿左右),甚至不及其GDP在全球16%的占比。
究其原因,
一方面欧洲是多国联动,受政治经济等因素影响,“执行力”差在所难免。
此外,欧洲三巨头一直以来在市场份额和营收排名中,其实表现很优异。抛开大环境不管,“幸福感”还是很强的。
不久前,欧盟已经讨论了建立一个新的代工厂的可能性,或者改造现有的代工厂,作为提高欧洲半导体产量计划的一部分。但是建立尖端制造工厂又何尝是一件容易事?
美国半导体产业协会(SIA)去年的一份报告显示,一家大型工厂的建设和组装成本可能高达200亿美元。此外,这些工厂可能需要很多年才能盈利。
近几代芯片的成本也一直在上升。正如英特尔所发现的那样,掌握制造最小晶体管所需的最新技术工艺是一项巨大的挑战。最近,苹果和台积电在敲定3nm第一单后,正联合推进2nm工艺,很可能在中国台湾的新竹县宝山乡作为试验和开发基地。如果一切顺利,将会在2023年试产。不过,即使台积电和苹果这两大业界巨头合作进行研发,2nm工艺的开发仍然有很大的难度。
--END--
近年来,各国相继引入了将人工智能应用于武器装备的发展理念,而发展人工智能所需的卷积神经网络计算高度依赖于图形处理器芯片。去年,使用NVIDIA的专业图形处理器开发了“阿尔法狗斗”(Alpha Dog Fight)智能,该东西在人机模拟空战中以5:0的分数击败了人类F-16飞行员。除了人工智能领域,传统武器还需要大量芯片。例如,F-35战斗机的全景座舱显示器和头盔显示器都使用美国AMD公司的芯片。报告显示,为了利用芯片产业在军事领域创造优势,美国正在实施电子复兴计划,并通过与美国公司建立合作关系,将重点放在军事芯片技术和产品开发上。
同时,美国还提出了微电子计划,以确保芯片供应链的安全。该计划在2020年的90项国防研究计划中排名第二。全面控制半导体芯片的生产和销售渠道。美国许多芯片生产不在中国。包括英特尔,高通和超微半导体在内的芯片也已经外包了海外业务。美国在全球芯片制造业中所占的份额已从1990年的37%下降到了12%。美国国内制造业中的许多半导体公司已经掌握了该技术,但没有生产能力,因此美国无法完全切断联系芯片在市场上流通。
芯片技术的发展并不意味着如果要垄断就可以实现垄断。 10年前,美国控制的芯片占全球的25%,但两年前,这一数字已降至10%。在这方面,美国预测,未来五年甚至会下降到5%。由此可见,美国的技术垄断已经在下降。随着各国科学技术的不断发展,不再希望保持在科学技术领域的领先地位并依靠这一优势来压制其他国家已不再乐观。
就在最近,欧盟的19个国家宣布了一项新的芯片战略,并准备在欧洲芯片产业投资约500亿欧元,以创建欧洲自己完整的半导体生态系统。德国表示,欧洲国家采用新芯片战略的背景是,过去两年来,美国对中国公司实施了制裁,这大大降低了欧洲公司的利润。无法向中国出售最先进的光刻机。据分析,欧盟的举动是在全球半导体产业中争取更多的声音,同时也保证了欧洲半导体产业的自治。在过去的30年中,欧洲一直致力于在全球半导体市场中扮演重要角色。
导读
背景
在隐藏于笔记本电脑或者智能手机中的每个现代微型电路中,你都会看到晶体管。晶体管是一种小型半导体器件,它控制电流流动,即电子的流动。
如果用光子(光的基本粒子)取代电子,那么科学家们将有望创造出新型计算系统,这种系统将能够处理以接近光速流动的大量信息。
目前,在量子计算机中,光子被认为是传递信息的最佳方案。然而,这些仍然只是假想计算机。它们按照量子世界的规律运作,并且能比大多数最强大的超级计算机更加高效地解决某些问题。
虽然创造量子计算机没有基本限制,但是科学家们仍然没有选择出哪种材料平台可以最方便且有效地实现量子计算机概念。目前,超导电路、冷原子、离子、钻石中的缺陷以及其他系统,为了被未来量子计算机选中而展开竞争。
创新
这一次,科学家们提出了半导体平台和二维晶体。近日,维尔茨堡大学(德国)、南安普顿大学(英国)、格勒诺布尔-阿尔卑斯大学(法国)、亚利桑那大学(美国)、西湖大学(中国)、俄罗斯科学院约飞物理技术研究所、圣彼得堡国立大学的科学家们组成的国际科研团队研究了光子是如何在世界上最薄的半导体晶体平面中传播的。结果是,空间中的光线偏振分布类似于三色的海螺。物理学家们的研究成果为创造单原子光学晶体管(量子计算机的组件)开辟了道路,有望实现光速计算。研究论文发表在《自然纳米技术(Nature Nanotechnology)》期刊上。
技术
研究人员研究了光线在二硒化钼(MoSe2)二维晶体层中的传播。二硒化钼只有一个原子的厚度,是世界上最薄的半导体晶体。研究人员发现,偏振光在这种极细晶层中的传播取决于光线传播的方向。这个现象是由于晶体中的自旋轨道相互作用引起的。有意思的是,正如科学家们所指出的,这幅图展示的偏振光空间分布非同寻常,看上去像五彩缤纷的的海螺。
实验中所用的非常精细的二硒化钼晶体是在维尔茨堡大学 Sven Höfling 教授实验室中合成的。它是欧洲最佳的晶体生长实验室之一。在圣彼得堡国立大学教授 Alexey Kavokin 的监督下,科学家们在维尔茨堡和圣彼得堡进行测量。Mikhail Glazov 在开发理论基础中扮演了重要角色。他是俄罗斯科学院的通信成员、圣彼得堡国立大学自旋光学实验室的雇员、约飞物理技术研究所的首席研究助理。
价值
圣彼得堡国立大学自旋光学实验室的领头人 Alexey Kavokin 教授表示:“我预见,在不久的将来,二维单原子晶体将用于量子设备中的信息传输。对于经典的计算机与超级计算机需要花很长时间才能完成的任务来说,量子计算设备完成起来非常快。因此,量子技术有着巨大的危险,可以与原子d的危险相提并论。例如,在量子技术的帮助下,非常迅速地非法入侵银行保护系统将成为可能。这就是如今密集的研究工作在进行的原因所在。这些工作包括创造保护量子设备的手段,即量子加密技术。而我们的工作主要为半导体量子技术作出了贡献。”
此外,正如科学家们所提到的,这项研究是朝着研究光诱导(即出现在光线下)的超导性迈出的重要一步。当材料允许电流以零电阻通过时,超导现象就发生了。目前,这种状态无法在零下70摄氏度以上的温度条件下实现。可是,如果找到合适的材料,这项发现有可能将电力零损耗地传输到地球上的任何位置,并创造出新一代的电动马达。应该被记住的是,2018年3月,Alexey Kavokin 的研究团队曾预测,含有超导金属(例如铝)的结构,有助于解决这个问题。如今,圣彼得堡国立大学的科学家们正在寻找途径获取他们理论的实验证据。
参考资料
【1】http://english.spbu.ru/news/3015-three-colour-rapana-physicists-have-let-light-through-the-plane-of-the-world-s-thinnest-semiconductor-crystal
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)