捷佳伟创成立于2007年6月,2018年8月在创业板上市,公司位于深圳市坪山区,现有员工2143人,公司董事长余仲与副总经理左国军、董事梁美珍为公司控股股东和实际控制人,三人为一致行动人。公司主营业务为晶体硅太阳能电池片生产设备的研发、制造和销售,产品包括单/多晶制绒设备、管式扩散氧化退火炉、酸抛光及碱抛光设备、管式等离子体沉积炉、智能自动化设备、全自动丝网印刷设备等六大产品系列。公司不仅为客户提供晶硅电池片生产设备,还提供晶硅电池"交钥匙工程"系统解决方案、晶体硅电池智能制造车间系统以及晶体硅电池丝网印刷线,目前客户覆盖晶科能源、天合光能、隆基股份等国内外绝大多数电池厂商,市占率超过50%:
近几年受行业快速发展,公司业绩呈高增长,2019年营业收入与归母净利润分别为25.27亿元、3.82亿元,同比增长69.3%和24.7%,业绩增长明显。2020年上半年公司通过分批复工、协助供应商恢复生产等措施,确保公司2月份开始有序复工生产,设备验收确认收入大幅增加,上半年公司实现营收18.93亿元,同比增长55.4%;实现归母净利润2.49亿元,同比增长8.11%。同时公司还持续加强新设备研发与技术创新,不断加大市场开拓力度,巩固公司市场领先地位。
2020年9月29日捷佳伟创发布《2020年度向特定对象发行A股股票预案》,计划向特定对象发行募集资金总额不超过约25亿元,用于超高效太阳能电池装备产业化项目和先进半导体装备研发项目,项目稳步推进后将新增年产25GW Perc+高效新型电池湿法设备,新增25GW HJT超高效新型电池的湿法设备以及单层载板式非晶半导体薄膜CVD产能,并新增年产50套HJT电池镀膜设备。同时公司加大半导体设备投入,专注于Cassette-Less刻蚀设备和单晶圆清洗设备技术改进与研发、立式炉管低压CVD设备、立式炉管低压ALD设备及立式炉管HK ALO/HFO2工艺设备技术的改进与研发:
2019年以来各大硅片厂商相继推出大硅片产品,隆基股份推出166尺寸硅片,中环股份推出210尺寸硅片。2020年以来隆基股份、晶澳和晶科能源组成182联盟并推行182尺寸硅片,光伏硅片尺寸逐步从过去的主流M2、G1硅片向更大尺寸发展。
从光伏的生产工艺来说,硅片后端的电池片和组件环节的生产流程是按片进行生产,单片硅片功率的增加,有助于降低单位的生产成本。从电池片产线来看,每条产线的产能由产线出片速率和每片功率所决定。随着硅片面积的增加,产线上单品功率得到明显提升,从而有助于摊销掉和硅片面积无关的其他固定成本,从而降低非硅成本。因此硅片大型化推动电池片和组件端降低成本。
在2020年SNEC展会上各家组件厂商在基于大尺寸电池片封装的技术上相继推出600W、700W以上高功率组件,电池片大型化趋势明显。
大尺寸电池片渗透率提升催生电池片产线升级需求并催生电池片迎来新一轮扩产高峰,甚至或将加速部分老产线淘汰退出市场。目前存量产线进行小幅更改后可以兼容166硅片,但对182和210硅片而言改造幅度较大,因此新投产电池片产线将选择向下兼容的方式适配182和210硅片。PV InfoLink预计2020年182尺寸和210尺寸电池片产能分别为33GW和18GW,预计到2021年182尺寸和210尺寸硅片产能有望达到79GW和67GW,其中新增产能分别为46GW和49GW:
在技术创新上电池片同样正在完成从P型向N型跨越。2018年以来随着PERC电池片技术推出,单晶硅片转换效率优势更加明显,电池片厂商主动向单晶PERC产线转移,单晶逐步完成对多晶的替代。
相比于P型,N型单晶硅主要在单晶中掺磷,N型材料中的杂质对少子空穴的捕获能力低于P型材料中杂质对少子电子的捕获能力,相同电阻率的N型硅片的少子寿命比P型硅片高出1-2个数量级,达到毫秒级。
从技术路线发展来看,P型电池片转换效率存在瓶颈,P型向N型转换势在必行。目前N型电池片技术主要包括N-Pert、TopCon、异质结和IBC四大技术方向,机理与半导体接近,因此随着电池制备技术升级,光伏电池工艺逐步向半导体工艺升级:
PERC技术是在常规的BSF电池基础上进行背面钝化层和激光开槽,目前单晶PERC电池片最早转换效率为24.06%,但考虑到量产环节中的损耗,PERC的平均量产效率在22.5%左右,传统PERC转换效率提升空间存在瓶颈。
根据《后PERC时代高效晶硅电池量产技术路线探讨》,除了工艺上的优化,还可通过优化制绒技术研发、电流一维传输机制、背面TopCon加载、选择性透过技术结构加载和优化金属化-细栅线技术等对PERC电池结构进行升级。ISFH研究表明采用钝化接触电池结构如TopCon可使得此类电池极限效率提升至28.2%-28.7%,高于异质结的27.5%和PERC的24.5%,非常接近晶体硅太阳能电池极限效率29.43%。目前捷佳伟创积极布局PERC+技术,相关技术钝化设备研发已进入工艺验证阶段。
TopCon生产流程分为9步,分别为硅片制绒清洗、扩散制结、湿法刻蚀、隧道结制备、离子注入、退火和湿化学清洗、ALD沉积氧化铝、PECVD 沉积氮化硅膜、丝网印刷等工序。其中大部分设备可以和PERC+SE产线共用,只需要额外增加硼扩散、LPCVD沉积(隧道结制备环节)、离子注入(或者扩散装备)和去绕镀清洗环节设备,便可以实现设备的升级,目前龙头厂商PERC产线均留有一定设备空间,有助于产线改造升级。
根据TaiyangNews报道,捷佳伟创LPCVD设备已经完成测试,设备与海外厂商相比主要差异不大,随着设备国产化推进,TopCon产线投资成本有望大幅下降:
异质结通常以N型晶体硅做衬底,宽带隙的非晶硅做发射极,具备双面对称结构。电池正表面空穴通过高掺杂P型非晶硅构成空穴传输层;电池背面电子通过高掺杂N型非晶硅构成电子传输层,光生载流子在吸收材料中产生并只能从电池一个表看流出,实现两者分离:
异质结电池片具有转换效率高、生产环节简单、将本空间大、发电增益等优势,目前日本松下和美国Solarcity公司已经布局,产能均达到1GW左右。国内钧石产能达到600MW。在制造工艺中TCO沉积在异质结电池沉积工艺后半部分,通过沉积TCO膜作为减反层和横向运载流子至电极的导电层,一般TCO沉积在PVD设备中通过溅射方式完成。捷佳伟创选择的是反应等离子RPD技术,和双面进行薄膜沉积的PVD路线相比采用自下而上的单侧沉积技术,关键设备是等离子q:
2020年9月捷佳伟创完成新一代HJT关键量产设备RPD5500A的装配调试,新型RPD设备具有离子轰击小、穿透率高等特点,在同等条件下采用新型RPD镀膜的HJT技术装备和工艺方案,相比现有常规HJT装备和工艺,高出至少0.6%的效率增益。如果配合新一代靶材技术和工艺,会带来更高的效率增益、更低的电子共振吸收、更好的长波透光率和更优秀的导电性。此外公司二合一PAR5500设备即将推出,有望大幅降低设备成本。
半导体材料(semiconductor material)是一类具有半导体性能(导电能力介于导体与绝缘体之间,电阻率约在1mΩ·cm~1GΩ·cm范围内)、可用来制作半导体器件和集成电路的电子材料。
一、半导体材料主要种类
半导体材料可按化学组成来分,再将结构与性能比较特殊的非晶态与液态半导体单独列为一类。按照这样分类方法可将半导体材料分为元素半导体、无机化合物半导体、有机化合物半导体和非晶态与液态半导体。
1、元素半导体:在元素周期表的ⅢA族至ⅦA族分布着11种具有半导性半导体材料的元素,下表的黑框中即这11种元素半导体,其中C表示金刚石。C、P、Se具有绝缘体与半导体两种形态B、Si、Ge、Te具有半导性Sn、As、Sb具有半导体与金属两种形态。P的熔点与沸点太低,Ⅰ的蒸汽压太高、容易分解,所以它们的实用价值不大。As、Sb、Sn的稳定态是金属,半导体是不稳定的形态。B、C、Te也因制备工艺上的困难和性能方面的局限性而尚未被利用。因此这11种元素半导体中只有Ge、Si、Se 3种元素已得到利用。Ge、Si仍是所有半导体材料中应用最广的两种材料。
(半导体材料)
2、无机化合物半导体:分二元系、三元系、四元系等。 二元系包括:①Ⅳ-Ⅳ族:SiC和Ge-Si合金都具有闪锌矿的结构。②Ⅲ-Ⅴ族:由周期表中Ⅲ族元素Al、Ga、In和V族元素P、As、Sb组成,典型的代表为GaAs。它们都具有闪锌矿结构,它们在应用方面仅次于Ge、Si,有很大的发展前途。③Ⅱ-Ⅵ族:Ⅱ族元素Zn、Cd、Hg和Ⅵ族元素S、Se、Te形成的化合物,是一些重要的光电材料。ZnS、CdTe、HgTe具有闪锌矿结构。④Ⅰ-Ⅶ族:Ⅰ族元素Cu、Ag、Au和 Ⅶ族元素Cl、Br、I形成的化合物,其中CuBr、CuI具有闪锌矿结构。⑤Ⅴ-Ⅵ族:Ⅴ族元素As、Sb、Bi和Ⅵ族元素 S、Se、Te形成的化合物具有的形式,如Bi2Te3、Bi2Se3、Bi2S3、As2Te3等是重要的温差电材料。⑥第四周期中的B族和过渡族元素Cu、 Zn、Sc、Ti、V、Cr、Mn、Fe、Co、Ni的氧化物,为主要的热敏电阻材料。⑦某些稀土族元素 Sc、Y、Sm、Eu、Yb、Tm与Ⅴ族元素N、As或Ⅵ族元素S、Se、Te形成的化合物。 除这些二元系化合物外还有它们与元素或它们之间的固溶体半导体,例如Si-AlP、Ge-GaAs、InAs-InSb、AlSb-GaSb、InAs-InP、GaAs-GaP等。研究这些固溶体可以在改善单一材料的某些性能或开辟新的应用范围方面起很大作用。
(半导体材料元素结构图)
半导体材料
三元系包括:族:这是由一个Ⅱ族和一个Ⅳ族原子去替代Ⅲ-Ⅴ族中两个Ⅲ族原子所构成的。例如ZnSiP2、ZnGeP2、ZnGeAs2、CdGeAs2、CdSnSe2等。族:这是由一个Ⅰ族和一个Ⅲ族原子去替代Ⅱ-Ⅵ族中两个Ⅱ族原子所构成的, 如 CuGaSe2、AgInTe2、 AgTlTe2、CuInSe2、CuAlS2等。:这是由一个Ⅰ族和一个Ⅴ族原子去替代族中两个Ⅲ族原子所组成,如Cu3AsSe4、Ag3AsTe4、Cu3SbS4、Ag3SbSe4等。此外,还有它的结构基本为闪锌矿的四元系(例如Cu2FeSnS4)和更复杂的无机化合物。
3、有机化合物半导体:已知的有机半导体有几十种,熟知的有萘、蒽、聚丙烯腈、酞菁和一些芳香族化合物等,它们作为半导体尚未得到应用。
4、非晶态与液态半导体:这类半导体与晶态半导体的最大区别是不具有严格周期性排列的晶体结构。
二、半导体材料实际运用
制备不同的半导体器件对半导体材料有不同的形态要求,包括单晶的切片、磨片、抛光片、薄膜等。半导体材料的不同形态要求对应不同的加工工艺。常用的半导体材料制备工艺有提纯、单晶的制备和薄膜外延生长。
半导体材料所有的半导体材料都需要对原料进行提纯,要求的纯度在6个“9”以上,最高达11个“9”以上。提纯的方法分两大类,一类是不改变材料的化学组成进行提纯,称为物理提纯另一类是把元素先变成化合物进行提纯,再将提纯后的化合物还原成元素,称为化学提纯。物理提纯的方法有真空蒸发、区域精制、拉晶提纯等,使用最多的是区域精制。化学提纯的主要方法有电解、络合、萃取、精馏等,使用最多的是精馏。由于每一种方法都有一定的局限性,因此常使用几种提纯方法相结合的工艺流程以获得合格的材料。
(半导体材料)
绝大多数半导体器件是在单晶片或以单晶片为衬底的外延片上作出的。成批量的半导体单晶都是用熔体生长法制成的。直拉法应用最广,80%的硅单晶、大部分锗单晶和锑化铟单晶是用此法生产的,其中硅单晶的最大直径已达300毫米。在熔体中通入磁场的直拉法称为磁控拉晶法,用此法已生产出高均匀性硅单晶。在坩埚熔体表面加入液体覆盖剂称液封直拉法,用此法拉制砷化镓、磷化镓、磷化铟等分解压较大的单晶。悬浮区熔法的熔体不与容器接触,用此法生长高纯硅单晶。水平区熔法用以生产锗单晶。水平定向结晶法主要用于制备砷化镓单晶,而垂直定向结晶法用于制备碲化镉、砷化镓。用各种方法生产的体单晶再经过晶体定向、滚磨、作参考面、切片、磨片、倒角、抛光、腐蚀、清洗、检测、封装等全部或部分工序以提供相应的晶片。
在单晶衬底上生长单晶薄膜称为外延。外延的方法有气相、液相、固相、分子束外延等。工业生产使用的主要是化学气相外延,其次是液相外延。金属有机化合物气相外延和分子束外延则用于制备量子阱及超晶格等微结构。非晶、微晶、多晶薄膜多在玻璃、陶瓷、金属等衬底上用不同类型的化学气相沉积、磁控溅射等方法制成。
三、半导体材料发展现状
相对于半导体设备市场,半导体材料市场长期处于配角的位置,但随着芯片出货量增长,材料市场将保持持续增长,并开始摆脱浮华的设备市场所带来的阴影。按销售收入计算,
半导体材料日本保持最大半导体材料市场的地位。然而台湾、ROW、韩国也开始崛起成为重要的市场,材料市场的崛起体现了器件制造业在这些地区的发展。晶圆制造材料市场和封装材料市场双双获得增长,未来增长将趋于缓和,但增长势头仍将保持。
(半导体材料)
美国半导体产业协会(SIA)预测,2008年半导体市场收入将接近2670亿美元,连续第五年实现增长。无独有偶,半导体材料市场也在相同时间内连续改写销售收入和出货量的记录。晶圆制造材料和封装材料均获得了增长,预计今年这两部分市场收入分别为268亿美元和199亿美元。
日本继续保持在半导体材料市场中的领先地位,消耗量占总市场的22%。2004年台湾地区超过了北美地区成为第二大半导体材料市场。北美地区落后于ROW(RestofWorld)和韩国排名第五。ROW包括新加坡、马来西亚、泰国等东南亚国家和地区。许多新的晶圆厂在这些地区投资建设,而且每个地区都具有比北美更坚实的封装基础。
芯片制造材料占半导体材料市场的60%,其中大部分来自硅晶圆。硅晶圆和光掩膜总和占晶圆制造材料的62%。2007年所有晶圆制造材料,除了湿化学试剂、光掩模和溅射靶,都获得了强劲增长,使晶圆制造材料市场总体增长16%。2008年晶圆制造材料市场增长相对平缓,增幅为7%。预计2009年和2010年,增幅分别为9%和6%。
半导体材料市场发生的最重大的变化之一是封装材料市场的崛起。1998年封装材料市场占半导体材料市场的33%,而2008年该份额预计可增至43%。这种变化是由于球栅阵列、芯片级封装和倒装芯片封装中越来越多地使用碾压基底和先进聚合材料。随着产品便携性和功能性对封装提出了更高的要求,预计这些材料将在未来几年内获得更为强劲的增长。此外,金价大幅上涨使引线键合部分在2007年获得36%的增长。
与晶圆制造材料相似,半导体封装材料在未来三年增速也将放缓,2009年和2010年增幅均为5%,分别达到209亿美元和220亿美元。除去金价因素,且碾压衬底不计入统计,实际增长率为2%至3%。
四、半导体材料战略地位
20世纪中叶,单晶硅和半导体晶体管的发明及其硅集成电路的研制成功,导致了电子工业革命20世纪70年代初石英光导纤维材料和GaAs激光器的发明,促进了光纤通信技术迅速发展并逐步形成了高新技术产业,使人类进入了信息时代。超晶格概念的提出及其半导体超晶格、量子阱材料的研制成功,彻底改变了光电器件的设计思想,使半导体器件的设计与制造从“杂质工程”发展到“能带工程”。纳米科学技术的发展和应用,将使人类能从原子、分子或纳米尺度水平上控制、 *** 纵和制造功能强大的新型器件与电路,深刻地影响着世界的政治、经济格局和军事对抗的形式,彻底改变人们的生活方式
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)