滚珠丝杠是工具机械和精密机械上最常使用的传动元件,是由螺杆、螺母、钢球、预压片、反向器、防尘器组成。其主要功能是将旋转运动转换成线性运动,或将扭矩转换成轴向反复作用力,同时兼具高精度、可逆性和高效率的特点。主要用于一些机床大型设备、雕刻机械等较为普遍,非常方便的把旋转的运动转换成直线运动,用起来非常方便,从而减少整个设备在旋转方面的磨损大大降低。
直线导轨使用非常广泛但种类很多,方型四排高珠导轨用于一些大型机床设备,如平面磨床,切片机、线切割等;也因工作条件的不同选用的直线导轨也是不同的,最适于精密测量仪器、半导体制造和检验设备、非标自动化机械设备以及其他精密直线运动至为重要的应用场合等,因不同设备需要选择正确的导轨也是至关重要的。
滚珠丝杆的特性
1、与滑动丝杆副相比驱动力矩为1/3
由于滚珠丝杆副的丝杆轴与丝母之间有很多滚珠在做滚动运动,所以能得到较高的运动效率.与过去的滑动丝杆副相比驱动力矩达到1/3以下,即达到同样运动结果所需的动力为使用滚动丝杆副的1/3.在省电方面很有帮助。
2、高精度的保证
滚珠丝杆副是用日本制造的世界最高水平的机械设备连贯生产出来的,特别是在研削、组装、检查各工序的工厂环境方面,对温度·湿度进行了严格的控制,由于完善的品质管理体制使精度得以充分保证.
3、微进给可能
滚珠丝杆副由于是利用滚珠运动,所以启动力矩极小,不会出现滑动运动那样的爬行现象,能保证实现精确的微进给.
4、无侧隙、刚性高
滚珠丝杆副可以加予压,由于予压力可使轴向间隙达到负值,进而得到较高的刚性(滚珠丝杆内通过给滚珠加予压力,在实际用于机械装置等时,由于滚珠的斥力可使丝母部的刚性增强).
5、高速进给可能
滚珠丝杆由于运动效率高、发热小、所以可实现高速进给(运动)。
直线导轨的特性
1、定位精度高
使用直线导轨作为线性导引时,由于直线导轨的摩擦方式为滚动摩擦,不仅摩擦系数降低至滑动导引的1/50,动摩擦力与静摩擦力的差距亦变得很小,因此当床台运动时,不会有打滑的现象发生,可达到超高精密级(um)级定为精度。
2、磨耗少能长时间维持精度
传统的滑动引导,无可避免的会因油膜逆流作用造成平台运动精度不良,且因运动时润滑不充份,导致运行轨道接触面的磨损,严重影响精度,而滚动导引的磨耗非常小,故机台能长时间维持精度。
3、使用高速度运动且大幅降低机台所需驱动马力
由于直线导轨移动时摩擦力非常小,只需较小动力便能让床台运行,尤其是在床台的工作方式为经常性往返运动时,更能明显降低机台点力损耗量,且因其摩擦产生的热度较小,可适用于高速运行。
4、可同时承受上下左右的负荷
由于直线导轨特殊的束制结构设计,可同时承受上下左右方向的负荷,不想滑动导引在平行接触面方向可承受的侧向负荷较轻,易造成机台运行精度不良。
5、组装容易并具互换性
组装时只要铣削或研磨床台上导轨之装配面,并依建议之步骤将导轨,滑块分别特定扭力固定于机台上,既能重视加工时的高精密度,传统的滑动导引,则须对运行轨道加以铲花,既费事又费时,且一旦机台精度不良,又必须在铲花一次,直线导轨具有互换性,可分别更换滑块货导轨至是直线导轨组,机台即可重新获得高精密度的引导。
6、润滑结构简单
滑动引导若润滑不足,将会照成接触面金属直接摩擦损耗床台,而滑动导引要润滑充足并不容易,需要在床台适当的位置钻孔供油,直线导轨则已在装置油嘴,可直接以注油q打入油脂,亦可换上专用油管接头链接供油油管,以自动供油机润滑。
润滑
有的直线导轨内置一定量的润滑脂,可以在一段时间里不用润滑,但大部分的线性导轨是需要润滑的。线性导轨的润滑和轴承比较类似,一般用粘度在100#以下的机械油即可。
在润滑前要先分清是油润滑还是油脂润滑,如果是油润滑,可以在滑块和丝杠的油孔处加油嘴,做配管润滑,集中供油,需要油泵等。如果是油脂润滑,用脂嘴和脂线,拉到好加油的位置即可。至于润滑周期的话,如果机器运转不是非常频繁,周期一般是3个月内保养。润滑时,一般要把原有的脏油顶出去。
而滚珠丝杆润滑时,因为丝杆螺帽里面的钢珠有一定的间隙。加太多油反有一定影响。润滑时,可以把螺帽转下来之后用棉签或者其它清理一下里面的脏东西就可以了。
温度对滚珠丝杆的影响
滚珠丝杆运转时,温度会影响到机械传动系统的精度,特别是高速且高精度的机械。影响滚珠丝杆温度升高的因素有预压力、润滑和预拉。
预压力的影响:为了避免造成机械传动系统的任何失步,提高螺帽刚性是很重要的然而高提高螺帽刚性,必须使螺帽预压力达到一定水准。施加预压力于螺帽会增加螺牙的摩擦扭矩,并使工作时的温度升高。
润滑的影响:润滑油的选择直接影响滚珠丝杆的温升,TBI的滚珠丝杆须采以油或者油脂其中一项的润滑,一般建议以轴承润滑油为滚珠丝杆油润滑,油脂则建议以锂皂基的油脂。油品黏度选用是依 *** 作速度、工作速度以及符合情形来做选择。
预拉的影响:滚珠丝杆温度升高时,热应力效应会使滚珠丝杆伸长,使丝杆的长度变得不稳定。其伸长量可借由预拉来补偿;过大的预拉会烧坏支撑轴承,若丝杆的直径超过50mm时也不适合做预拉,丝杆直径大就需要做预拉力,因此导致支撑轴承过热而烧坏。
温度对直线导轨的影响
若部件在130℃以上的高温下长期运行的话,就会降低直线导轨的使用寿命。不管是设备所处的环境高温,还是直线导轨在快速给进时的温度,都会让直线导轨处于异常的条件下,而高温同样会影响直线导轨的润滑剂。引起高温一般是由以下情况:
润滑剂选择不当,润滑不足或者过分润滑: 有很多设备制造商觉得比较粘稠的润滑剂会使设备运行更长时间而不需要再次润滑.
粘稠的润滑剂会使滑块和导轨的摩擦力增大,增加其内部温度,反之润滑剂太过稀疏也不行,这样会使得润滑剂更快的流失,蒸发,导致润滑不足,最后,导致高温,烧死。所以,一般都会强调设备制造商能定期对传动件进行保养,保证上银导轨的寿命。
粉尘过大: 一些设备使用的环境,因为粉尘过大,导致滑块滚动部位进入大量肉眼看不到的杂质,这样也会增加其摩擦系数,影响其预压以及间隙,严重时,会对滚动体造成腐蚀,最后导致卡死,电机烧死。
滚珠丝杆、直线导轨、滚珠螺杆、梯形丝杆等都会是属于直线传动的设备,名称也比较相似的,但是在它们在工作原理、要求以及使用范围上都是不一样的.滚珠丝杆:主要用于一些机床大型设备、雕刻机械等比较普遍的,非常方便的把旋转的运动转换成直线运动是采用循环滚珠,具有很高效率
梯形丝杆:主要用于一些机床大型设备、雕刻机械等比较普遍的,非常方便的把旋转的运动转换成直线运动,但要利用滑动表面之间的低摩擦系数,效率相当于滚珠丝杆的90%左右。
直线导轨:使用非常广泛但种类很多,方型四排高珠导轨用于一些大型机床设备,如平面磨床,切片机、线切割等;也因工作条件的不同选用的直线导轨也是不同的,最适合于精密测量仪器、半导体制造和检验设备、非标自动化机械设备以及其他精密直线运动至为重要的应用场合等。
综上,滚珠丝杆和梯形丝杆因为预测性能和寿命的能力存在差异,所以其应用领域也有根本的区别。而直线导轨的使用比滚珠丝杆更广泛
滚珠丝杆和梯形丝杆、直线导轨这些名称差不多相似的产品却有着不同的功能,在各自的领域发挥着不同的作用。
直线电动机的结构及其应用原则 直线电机是直接产生直线运动的电动机。它可以看成是旋转电机演化而来的。与旋转电机相对应,直线电机按机种分类可分为直线感应电动机、直线同步电动机、直线直流电动机和其它直线电动机(如直线步进电动机等)。旋转电动机的定子和转子,在直线电动机中称为初级和次级。为了在运动过程中始终保持初级和次级耦合,初级侧或次级侧中的一侧必须做得较长。在直线电动机中,直线感应电动机应用最广泛,因为它的次级可以是整块均匀的金属材料,即采用实芯结构,成本较低,适宜于做得较长。 直线电机按结构分类可分为平板型、管型、弧型和盘型。平板型结构是最基本的结构,应用也最广泛。直线电机按初级和次级的相对长度来分为短初级和短次级,按初级运动还是次级运动来分为动初级和动次级。各类直线电动机在工业应用方面得到了迅速发展,制成了不少有使用价值的装置,如用直线电机传动的电动门,电磁搅拌器,传送带,自动绘图仪,计算机磁盘定位机构等。 直线电机的优点是:结构简单。反应速度快,灵敏度高,随动性好。容易密封,不怕污染,适应性强(由于直线电机本身结构简单,又可做到无接触运行,因此容易密封,各部件用尼龙浸渍后,采用环氧树脂加以涂封,这样它就不怕风吹雨打,或有毒气体和化学药品的侵蚀,在核辐射和液体物质中也能应用)。工作稳定可靠寿命长(直线电机是一种直接传动的特种电机,可实现无接触传递力,没有什么机械损耗,故障少,几乎不需要维修,又不怕振动和冲击)。额定值高(直线电机冷却条件好,特别是长次级接近常温状态,因此线负荷和电流密度可以取得很高)。有精密定位和自锁的能力(和控制系统相配合,可做到0.001mm的位移精度和自锁能力)。 直线感应电动机的初级与旋转电动机的定子之间的最大差别是,前者初级铁芯的纵向两端是断开的,形成了两个纵向边缘,铁芯和绕组不象旋转电机那样在两端相互连接,这将对电机的磁场和性能产生一定的影响。当采用双层绕组时,直线感应电机初级的槽数一般要比相应的旋转电机的槽数多一些,才能放下三相绕组。由于初级铁芯的两端开断,三相绕组之间的互感不相等,将使电动机的运行不对称,并引起负序磁场和零序磁场。消除不对称的方法是,同时使用三台相同的电动机,并将第一台电机的第一相绕组和第二台的第二相绕组及第三台的第三相绕组串联,将第一台的第二相绕组和第二台的第三相绕组及第三台的第一相绕组串联,将第一台的第三相绕组与第二台的第一相绕组及第三台的第二相绕组串联,然后接上电源,这样一来就能获得对称的三相电流。对于不是同时使用三台电动机的场合,可以用增加极数的办法来减小各相之间互感的差别。初级铁芯的两端开断还会引起脉振磁场,消除脉振磁场的一个有效办法是安装补偿线圈。此外直线电机初、次级之间的气隙,由于机械结构刚度的限制和工艺水平的影响,一般要比旋转电机的气隙大2~3倍,因而使其功率和效率大大降低。这是直线电机的一个致命弱点。 直线电机能直接产生直线运动,这一点对直线运动机械设计者和使用者有很大的吸引力。不少直线运动的机械是由旋转电机传动的。这时候必须配置由旋转运动变为直线运动的机械传动装置,使得整个装置机构庞大,成本较高和效率较低。采用直线感应电机,不但省去了机械传动机构,而且可因地制宜地将直线感应电机的初级和次级安放在适当的空间位置或直接作为运动机械的一部分,使整个装置紧凑合理,有时还可以降低成本和提高效率。此外在某些场合,直线感应电机有它独特的应用,是旋转电机所不能替代的。但是并不是任何场合使用直线感应电机都能取得良好效果。为此必须首先了解直线电机的应用原则,以便能恰到好处地应用它。其应用原则有以下几个方面。 选择合适的运动速度。直线感应电机的运动速度与同步速度有关,而同步速度又正比于极距。因此极距的选择范围决定了运动速度的选择范围。极距太小会降低槽的利用率,增大槽漏抗和减小品质因数,从而降低电动机的效率和功率因数。极距的下限通常取3cm。极距可以没有上限,但当电机的输出功率一定时,初级铁芯的纵向长度是有限的;同时为了减小纵向边缘效应,电动机的极数不能太少,故极距不可能太大。对于工业用直线感应电机,极距的上限一般为30cm。这样在工频供电时,同步速度的选择范围相应地为3~25cm/s。当运动速度低于这一选择范围下限时,一般不宜使用直线感应电动机,除非使用变频电源,通过降低电源的频率来降低运动速度。在某些场合,允许用点动的方法来达到很低的速度,这时可以避免使用变频电源。 要有合适的推力。旋转电机可以适应很大的推力范围。将旋转电机配上不同的变速箱,可以得到不同的转速和转矩。在低速的场合,转矩可以扩大几十到几百倍,以至于用一个很小的旋转电机就可以推动一个很大的负载,当然功率是守恒的。直线感应电机则不同,它无法用变速箱改变速度和推力,因此它的推力无法扩大。要得到比较大的推力,只有依靠加大电动机的尺寸。这有时是不经济的。一般来说,在工业应用中,直线感应电机适用于推动轻载。 要有合适的往复频率。在工业应用中,直线感应电动机是往复运动的。为了达到较高的劳动生产率,要求有较高的往复频率。这意味着电动机要在较短的时间内走完行程,在一个行程内,要经历加速和减速的过程,也就是要起动一次和制动一次。往复频率越高,电动机的加速度就越大,加速度所对应的推力越大,有时加速度所对应的推力甚至大于负载所需推力。推力的提高导致电动机的尺寸加大,而其质量加大又引起加速度所对应的推力进一步提高,有时产生恶性循环。为此在设计电机时,应当充分重视对加速度的控制。根据合适的加速度计算出走完行程所需时间,由此决定电机的往返频率。在整个设计中,应尽量减小运动部分的质量,以便减小加速度所对应的推力。 要有合适的定位精度。在许多应用场合,电动机运行到位时由机械限位使之停止运动。为了使在到位时冲击小,可以加上机械缓冲装置。在没有机械限位的场合,比较简单的定位方法是,在到位前通过行程开关控制,对电机做反接制动或能耗制动,使在到位时停下来。但由于直线电机的机械特性是软特性,电源电压变化或负载变化都会影响电动机在开始制动时的初速度,从而影响停止时的位置。因此这种定位方法只能用于电源电压稳定且负协恒定的场合。 直线感应电机的应用面相当宽。例如可用于高速列车、传送车、传送线、传送带、搬运钢材、机械手、电动门、加速、电磁锤、电磁搅拌器和电磁泵、金属分离器、帘幕驱动等。还有一些特殊的直线电机应用在其他领域。例如压电直线电动机(利用压电材料的逆压电效应直接把电能转换成机械能。特点是步距小、推力不大、机构简单、速度易控制),用于精密测量和计量,也可在定位驱动中作为执行元件,在光学系统的聚焦驱动,激光干涉仪和计量系统中可得到应用,也可应用于光刻机上。常州苏泰电器为你解答(http://www.0519st.com/),希望能帮助到你,谢谢!!欢迎分享,转载请注明来源:内存溢出
评论列表(0条)