f20up20dn是三级管子。
三极管,全称应为半导体三极管,也称双极型晶体管、晶体三极管,是一种控制电流的半导体器件。其作用是把微弱信号放大成幅度值较大的电信号,也用作无触点开关。
三极管是半导体基本元器件之一,具有电流放大作用,是电子电路的核心元件。三极管是在一块半导体基片上制作两个相距很近的PN结,两个PN结把整块半导体分成三部分,中间部分是基区,两侧部分是发射区和集电区,排列方式有PNP和NPN两种。
工作原理:
三极管的工作原理三极管是一种控制元件,主要用来控制电流的大小,以共发射极接法为例(信号从基极输入,从集电极输出,发射极接地),当基极电压UB有一个微小的变化时,基极电流IB也会随之有一小的变化,受基极电流IB的控制。
集电极电流IC会有一个很大的变化,基极电流IB越大,集电极电流IC也越大,反之,基极电流越小,集电极电流也越小,即基极电流控制集电极电流的变化。但是集电极电流的变化比基极电流的变化大得多,这就是三极管的放大作用。
1、什么是金属-半导体接触的多子阻挡层和反阻挡层?什么是肖特基接触? 答:金属与N型半导体接触,当Wm>Ws 时:势垒区中的表面附近的能带向上弯曲,半导体表面电子浓度比体内小得多,为多子(电子)耗尽,因此,它是一个高阻区;多子(电子)在金属和半导体两边转移时,都需要克服一定的势垒,故,通常也将之称为多子阻挡层。 金属与N型半导体接触,Wm>x D )适用于此理论。此时,电子在势垒区的碰撞可以忽略,对于电子而言,势垒的形状并不重要,起决定作用的是势垒顶点的高度——半导体体内的电子只要有足够的能量超过势垒的顶点,就可以自由地通过阻挡层进入金属;同样,金属中能超越势垒顶的电子也能达到半导体体内;所以电流的计算就归纳为计算超越势垒的载流子数目,这就是热电子发射理论。 对于非简并半导体,单位体积中能量在E ~E+dE中的电子数目为: 取垂直于界面由半导体指向金属的方向为v x 的正方向,显然就单位截面积而言,大小为v x 的体积中,在其内的所有电子,单位时间内都可以达到金属和半导体的界面: 这些电子总数为:dN = v x .1.1.dn 在半导体侧的这些电子中,有能力越过势垒到达金属的电子,其v x 必须达到: 2 / 1 0 2 )] ( 2 1 [ ) ( 2 1 V V q m v V V q v m D n x D x n z y x kT v v v m n dv dv dv v e kT m n dn z y x n 2 2 ) ( 2 3 0 4 ) 2 ( 2 2 2 即:仅有v x 在[v x0 ,+ ] 范围内的电子可以越过势垒,所以,单位时间内,达到金-半界面的电子数为: 这时所形成的电流为: 0 x v dN N 常数 称为 其中, Richardson k qm h A e e T A dN q qN J kT qV kT q v m s ns x 2 * 3 2 4 1 0 电子从金属向半导体运动(发射)时遇到的势垒高度为q m ,不随外加电压而改变, 故电流是个恒定值,它在热平衡时(V=0) 与从半导体运动(发射)到金属的电子流相抵消,即: 电流的表达式还可以写成以下形式: 0 8 ( 1) , 4 D F q V q V k T k T n q v n k T J e e v m 其中 ) 1 ( ) 1 ( 0 0 2 * 2 * 0 kT qV kT qV kT q s m m s n kT q s m V m s s m F F m m F e J e e T A J J J e T A J J J 总电流形式为: 电流通过热电子发射过程的输运: Si、Ge、GaAs材料的载流子迁移率较高,热电子发射理论对它们比较适用。瑞昱芯片。根据查询DN1619A芯片显示,瑞昱芯片的材质主要是硅,它的性质是可以做半导体,高纯的单晶硅是重要的半导体材料,在单晶硅中掺入微量的第IIIA族元素,形成p型硅半导体;掺入微量的第VA族元素,形成n型半导体。欢迎分享,转载请注明来源:内存溢出
评论列表(0条)