冶金与半导体材料的关系

冶金与半导体材料的关系,第1张

冶金与半导体材料的关系是冶金可以提升半导体光电转换特性。在半导体元素提取领域,采用光电化学沉积的方法进行半导体元素的电化学冶金提取,即在半导体元素电沉积提取过程中,对阴极表面施加光照,以促进阴极还原反应的进行,并强化沉积过程,在电沉积提取半导体元素过程中,一旦沉积开始进行,电极上就会生成一层半导体膜覆盖在原始基底表面,电化学反应发生场所由导体/电解液界面,转变为半导体/电解液界面。当光照射至电极表面时,半导体本身和半导体/电解液界面的性质会发生显著变化,使得电沉积过程与传统工作状态相比产生明显差异,从而提高沉积效果,结合半导体特性以及光电化学基本理论,光电化学沉积提取半导体元素具备一系列优势,半导体元素的导电性差,是其电沉积技术存在各种问题的根本原因,而光电化学技术利用半导体元素的光电导效应,也就是当半导体吸收能量大于带隙宽度的光子以后产生光生电子空穴对,使载流子浓度的上升,使其电导率增加,这就为解决半导体元素电沉积过程中半导体导电性差带来的系列问题提供了有效途径,从而起到了全面强化电沉积效果的作用。

(1)

硅的主要来源是石英砂(二氧化硅),硅元素和氧元素通过共价键连接在一起。因此需要将氧元素从二氧化硅中分离出来,换句话说就是要将硅还原出来,采用的方法是将二氧化硅和碳元素(可以用煤、焦炭和木屑等)一起在电弧炉中加热至2100°C左右,这时碳就会将硅还原出来。化学反应方程式为:SiO2 (s) + 2C (s) = Si (s) + 2CO (g)(吸热)

(2)

上一步骤中得到的硅中仍有大约2%的杂质,称为冶金级硅,其纯度与半导体工业要求的相差甚远,因此还需要进一步提纯。方法则是在流化床反应器中混合冶金级硅和氯化氢气体,最后得到沸点仅有31°C的三氯化硅。化学反应方程式为:Si (s) + 3HCl (g) = SiHCl3 (g) + H2 (g)(放热)

(3)

随后将三氯化硅和氢气的混合物蒸馏后再和加热到1100°C的硅棒一起通过气相沉积反应炉中,从而除去氢气,同时析出固态的硅,击碎后便成为块状多晶硅。这样就可以得到纯度为99.9999999%的硅,换句话说,也就是平均十亿个硅原子中才有一个杂质原子。

(4)

进行到目前为止,半导体硅晶体对于芯片制造来说还是太小,因此需要把块状多晶硅放入坩埚内加热到1440°C以再次熔化 。为了防止硅在高温下被氧化,坩埚会被抽成真空并注入惰性气体氩气。之后用纯度99.7%的钨丝悬挂硅晶种探入熔融硅中,晶体成长时,以2~20转/分钟的转速及3~10毫米/分钟的速率缓慢从熔液中拉出:

探入晶体“种子”

长出了所谓的“肩部”

长出了所谓的“身体”

这样一段时间之后就会得到一根纯度极高的硅晶棒,理论上最大直径可达45厘米,最大长度为3米。

以上所简述的硅晶棒制造方法被称为切克劳斯法(Czochralski process,也称为柴氏长晶法),此种方法因成本较低而被广泛采用,除此之外,还有V-布里奇曼法(Vertikalern Bridgman process)和浮动区法(floating zone process)都可以用来制造单晶硅。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/8731048.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-20
下一篇 2023-04-20

发表评论

登录后才能评论

评论列表(0条)

保存