从科技或是经济发展的角度来看,半导体非常重要。很多电子产品,如计算机、移动电话、数字录音机的核心单元都是利用半导体的电导率变化来处理信息。
常见的半导体材料有硅、锗、砷化镓等,而硅更是各种半导体材料中,在商业应用上最具有影响力的一种。
硅基半导体自旋量子比特以其长量子退相干时间和高 *** 控保真度,以及与现代半导体工艺技术兼容的高可扩展性,成为量子计算研究的核心方向之一。
一、半导体基本概念1、半导体及其导电性能
根据物体的导电能力的不同,电工材料可分为三类:导体、半导体和绝缘体。
半导体可以定义为导电性能介于导体和绝缘体之间的电工材料,半导体的电阻率为10-3~10-9 cm。典型的半导体有硅Si和锗Ge以及砷化镓GaAs等。
半导体的导电能力在不同的条件下有很大的差别:当受外界热和光的作用时,它的导电能力明显变化;往纯净的半导体中掺入某些特定的杂质元素时,会使它的导电能力具有可控性,这些特殊的性质决定了半导体可以制成各种器件。 2、本征半导体的结构及其导电性能
本征半导体是纯净的、没有结构缺陷的半导体单晶。制造半导体器件的半导体材料的纯度要达到99.9999999%,常称为“九个9”,它在物理结构上为共价键、呈单晶体形态。在热力学温度零度和没有外界激发时,本征半导体不导电。 3、半导体的本征激发与复合现象
当导体处于热力学温度0 K时,导体中没有自由电子。当温度升高或受到光的照射时,价电子能量增高,有的价电子可以挣脱原子核的束缚而参与导电,成为自由电子。这一现象称为本征激发(也称热激发)。因热激发而出现的自由电子和空穴是同时成对出现的,称为电子空穴对。
游离的部分自由电子也可能回到空穴中去,称为复合。 在一定温度下本征激发和复合会达到动态平衡,此时,载流子浓度一定,且自由电子数和空穴数相等。 4、半导体的导电机理
自由电子的定向运动形成了电子电流,空穴的定向运动也可形成空穴电流,因此,在半导体中有自由电子和空穴两种承载电流的粒子(即载流子),这是半导体的特殊性质。空穴导电的实质是:相邻原子中的价电子(共价键中的束缚电子)依次填补空穴而形成电流。由于电子带负电,而电子的运动与空穴的运动方向相反,因此认为空穴带正电。
5、杂质半导体
掺入杂质的本征半导体称为杂质半导体。杂质半导体是半导体器件的基本材料。在本征半导体中掺入五价元素(如磷),就形成N型(电子型)半导体;掺入三价元素(如硼、镓、铟等)就形成P型(空穴型)半导体。杂质半导体的导电性能与其掺杂浓度和温度有关,掺杂浓度越大、温度越高,其导电能力越强。
在N型半导体中,电子是多数载流子,空穴是少数载流子。
多子(自由电子)的数量=正离子数+少子(空穴)的
数量
在P型半导体中,空穴是多数载流子,电子是少数载流子。
多子(空穴)的数量=负离子数+少子(自由电子)的
数量
半导体的应用改变了我们的生活方式,用途广泛,以半导体企业MACOM为例来说下半导体对我们的影响吧,MACOM通过为光学、无线和卫星网络提供半导体技术,来满足社会对信息的需求,从而实现连通且安全的世界。通过推动各种基础设施的建设,使数百万人在生活中每时每刻沟通、旅行、获取信息和参与娱乐活动。相应的半导体技术提高了移动互联网的速度和覆盖率,让光纤网络得以向企业、家庭和数据中心传输通信。半导体技术支持的下一代雷达,可用于空中交通管制和天气预报,从而保卫所有人的安全。除了通信之外,半导体还在模拟射频、微波、毫米波和光子等方面有相关应用,可帮助我们解决网络容量、信号覆盖、能源效率和现场可靠性等问题。从中可以看出半导体对我们今天的生活影响深远。欢迎分享,转载请注明来源:内存溢出
评论列表(0条)