什麼是半导体 ?

什麼是半导体 ?,第1张

半导体

semiconductor

电导率(conductivity)介于金属和绝缘体(insulator)之间的固体材料。半导体于室温时电导率约在10ˉ10~10000/Ω·cm之间,纯净的半导体温度升高时电导率按指数上升。半导体材料有很多种,按化学成分可分为元素半导体和化合物半导体两大类。锗和硅是最常用的元素半导体;化合物半导体包括Ⅲ-Ⅴ 族化合物(砷化镓、磷化镓等)、Ⅱ-Ⅵ族化合物( 硫化镉、硫化锌等)、氧化物(锰、铬、铁、铜的氧化物),以及由Ⅲ-Ⅴ族化合物和Ⅱ-Ⅵ族化合物组成的固溶体(镓铝砷、镓砷磷等)。除上述晶态半导体外,还有非晶态的有机物半导体等。

本征半导体(intrinsic semiconductor) 没有掺杂且无晶格缺陷的纯净半导体称为本征半导体。在绝对零度温度下,半导体的价带(valence band)是满带(见能带理论),受到光电注入或热激发后,价带中的部分电子会越过禁带(forbidden band/band gap)进入能量较高的空带,空带中存在电子后成为导带(conduction band),价带中缺少一个电子后形成一个带正电的空位,称为空穴(hole),导带中的电子和价带中的空穴合称为电子 - 空穴对。上述产生的电子和空穴均能自由移动,成为自由载流子(free carrier),它们在外电场作用下产生定向运动而形成宏观电流,分别称为电子导电和空穴导电。这种由于电子-空穴对的产生而形成的混合型导电称为本征导电。导带中的电子会落入空穴,使电子-空穴对消失,称为复合(recombination)。复合时产生的能量以电磁辐射(发射光子photon)或晶格热振动(发射声子phonon)的形式释放。在一定温度下,电子 - 空穴对的产生和复合同时存在并达到动态平衡,此时本征半导体具有一定的载流子浓度,从而具有一定的电导率。加热或光照会使半导体发生热激发或光激发,从而产生更多的电子 - 空穴对,这时载流子浓度增加,电导率增加。半导体热敏电阻和光敏电阻等半导体器件就是根据此原理制成的。常温下本征半导体的电导率较小,载流子浓度对温度变化敏感,所以很难对半导体特性进行控制,因此实际应用不多。

杂质半导体(extrinsic semiconductor) 半导体中的杂质对电导率的影响非常大,本征半导体经过掺杂就形成杂质半导体,一般可分为n型半导体和p型半导体。半导体中掺入微量杂质时,杂质原子附近的周期势场受到干扰并形成附加的束缚状态,在禁带中产生附加的杂质能级。能提供电子载流子的杂质称为施主(donor)杂质,相应能级称为施主能级,位于禁带上方靠近导带底附近。例如四价元素锗或硅晶体中掺入五价元素磷、砷、锑等杂质原子时,杂质原子作为晶格的一分子,其五个价电子中有四个与周围的锗(或硅)原子形成共价键,多余的一个电子被束缚于杂质原子附近,产生类氢浅能级-施主能级。施主能级上的电子跃迁到导带所需能量比从价带激发到导带所需能量小得多,很易激发到导带成为电子载流子,因此对于掺入施主杂质的半导体,导电载流子主要是被激发到导带中的电子,属电子导电型,称为n型半导体。由于半导体中总是存在本征激发的电子空穴对,所以在n型半导体中电子是多数载流子,空穴是少数载流子。相应地,能提供空穴载流子的杂质称为受主(acceptor)杂质,相应能级称为受主能级,位于禁带下方靠近价带顶附近。例如在锗或硅晶体中掺入微量三价元素硼、铝、镓等杂质原子时,杂质原子与周围四个锗(或硅)原子形成共价结合时尚缺少一个电子,因而存在一个空位,与此空位相应的能量状态就是受主能级。由于受主能级靠近价带顶,价带中的电子很容易激发到受主能级上填补这个空位,使受主杂质原子成为负电中心。同时价带中由于电离出一个电子而留下一个空位,形成自由的空穴载流子,这一过程所需电离能比本征半导体情形下产生电子空穴对要小得多。因此这时空穴是多数载流子,杂质半导体主要靠空穴导电,即空穴导电型,称为p型半导体。在p型半导体中空穴是多数载流子,电子是少数载流子。在半导体器件的各种效应中,少数载流子常扮演重要角色。

晶圆就是单晶硅圆片,由普通的硅沙拉制提炼而成,是最常见的半导体材料。

按其直径分为4?、6?和8?,近年发展了12?甚至更大规格。晶圆越大在

同一圆片上可安排的集成电路就越多,可降低成本,但要求材料技术和生产技术

更高。

半导体被称为国家工业的明珠,是国家综合实力的体现。美日韩是世界公认的半导体产业最发达的三个国家,它们培育了众多耳熟能详的跨国企业,英特尔、AMD、高通、三星、SK海力士、首尔半导体、东芝、瑞萨、信越等,个个体量惊人、实力雄厚。在上世纪九十年代,中国台湾曾经一度成为全球IC产业最发达的地区之一,期间,联发科、台积电、联电、日月光、联咏、瑞昱等企业迅速发展,让台湾半导体在全球产业链中占有一席之地。如今,在全球电子产业转移、大陆半导体崛起的形势下,台湾的IC产业仍旧活跃于一线,尤其是晶圆代工方面,台积电、联电一直位列全球十大晶圆代工厂商之中,让人惊叹不已。

坚定不移地执行科技振兴台湾的政策。台湾是一个岛屿,资源匮乏、人口有限,发展附加值产业是其壮大的必经之路。在上世纪七十年代,台湾确定了以科技产业为核心的政策,扶持了众多科技公司,威盛电子、联电、富士康均在此期间成立其中,联电是台湾第一家半导体企业。

台湾为了支持半导体产业的发展,做了很多尝试和创新,比如建立了世界上第一个由政府主导成立的科技产业园区--新竹科技产业园上世纪七十年代,台湾工研院与美国RCA签订长达十年的合约,同年7月,首座积体电路工厂破土,次年产制三吋晶圆成功。

对教育和人才的重视带来人才的供给。台湾的半导体人才一方面来源于本土大学,一方面来源于美国。台湾清华大学、交通大学、台湾大学都在早期就开通了半导体相关专业,并与美国等知名企业合作,通过产学研形式帮助人才快速成长。据悉,台湾之所以有源源不断的半导体人才,是因为它们与硅谷之间形成了一种成熟人才输送的模式,即台湾人去到硅谷工作、学习、成长,待自己技术成熟、翅膀硬了再回来创业。联华电子曹兴诚、台积电董事长张忠谋、联发科蔡明介等在创业之前均在美国硅谷做高管,拥有多年的工业和专业背景。

以IC代工带动整个半导体产业的策略。美国是半导体产业的发源地,在上世纪70年代,硅谷已经形成了相当成熟的行业、人才、专利等制度,在芯片、ODM等领域无人能及。台湾虽然坚定了发展半导体的决心,但从什么地方突破仍是需要思考一番!从代工起步,谋求在全球芯片产地一席之地,台湾半导体企业起初专注于封装环节。之后,台湾半导体产业发展旺盛,联发科和晨星做芯片、日月光专注于晶圆制造、精材科技做封装,逐步将半导体范围扩大到设计、制造、封装、测试等全产业链。

重视半导体专利有利于提升自身话语权。半导体的发展绕不开专利授权,很多专利在美国,如果想让自己在行业内有足够的话语权,重视专利是必须走的一条路台湾威盛和英特尔曾经因CPU授权问题闹得不可开交,联发科与高通也官司不断……台湾半导体最厉害的IC代工,这与它们对专利的重视密不可分,台积电圆代工业务全球第一,连续多年垄断台湾专利申请榜单,并专门成立了“知识产权”部门,对专利的投入值得学习。大陆的后起之秀中芯国际发展遇到瓶颈,其中很大一部分原因就是其与台积电的专利纠纷。

抓住了两次集成电路的产业变革机遇。集成电路大致有三个快速发展的机遇时期。第一个是上世纪六十年代,以美国主导的半导体行业变革,微处理器、存储器是当时的主流产品第二个是上世纪八十年代末,以客户为导向的晶圆代工模式兴起,台积电、联电等台湾本土IC代工企业崛起第三个是上世纪九十年代末,SOC产业的发展给IC产业带来机遇,形成了设计、制造、封装、测试为一体的全产业链,芯片设计联发科、制造巨头联咏科技、封装大咖力成等纷纷出现。

除了上述原因,台湾半导体产业的发展离不开岛内的大环境和大陆的支持,为什么这么说呢?一是由于台湾的电子产业非常发达,涉及手机、电脑、LED、电子组装等,整个产业链非常完善,相关公司众多,给了半导体企业发展和崛起的良好土壤。据统计,台湾本土的上市公司,近乎一半的企业与电子相关。二是由于大陆廉价的劳动力,给了台湾半导体企业高速发展的源动力,台湾很多与电子相关的厂商将自己的制造中心设在大陆。

1965年美国孟山都公司在世界上首先提出了二氧化硅溶胶和凝胶应用于硅晶圆片的抛光加工的专利。从此,半导体用抛光液(slurry)成为了半导体制造中的重要的、必不缺少的辅助材料。半导体硅片抛光工艺是衔接材料与器件制备的边沿工艺,它极大地影响着材料和器件的成品率,并肩负消除前加工表面损伤沾污以及控制诱生二次缺陷和杂质的双重任务。在特定的抛光设备条件下,硅片抛光效果取决于抛光剂及其抛光工艺技术。随着集成电路的集成度的不断提高,相应的要求亦有所提高,不但直径要增大,技术要求也相应地提高,并不断有新的要求出现。

采用SiO2抛光液进行硅片抛光加工,目前多采用化学机械抛光(CMP)技术。抛光工艺中有粗抛光和精抛光之分,故有粗抛光液和精抛光液品种之分。预计在2005年-2010年期间,在我国半导体抛光片业内整体需求抛光液量,每年会以平均增长率为25%比率的增长。2004年间使用SiO2抛光液总共约是157吨。其中粗抛液有约126吨, 精抛液有约31.5吨。

目前在我国半导体硅抛光片加工中,所使用的抛光液绝大多数都靠进口。国外半导体硅抛光液的市场占有率较高生产厂家,主要有美国Rodel &Onden Nalco、美国的DUPONT公司、日本FUJIMI公司等。尽管我国目前在抛光液行业现已发展到有几十家的企业,但是真正涉足到半导体硅片抛光液制造、研发方面的企业很少。无论是产品质量上、还是在市场占有率方面,国内企业都表现出与国外厂家具有相当的差距。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/8737551.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-20
下一篇 2023-04-20

发表评论

登录后才能评论

评论列表(0条)

保存