全球十大芯片公司排名

全球十大芯片公司排名,第1张

1、英特尔

英特尔公司成立于1968年,是半导体行业和计算创新领域的全球领先厂商。英特尔公司是世界上最大的半导体芯片制造厂商,它拥有了几十年的生产历史,从英特尔推出全球第一个处理器之后,就对我们的生活作出了重大的改变,同时也引发了之后的信息技术革命。

2、高通

高通成立于1985年美国,是较大的无生产线半导体生产商、无线芯片组及软件技术供应商,是目前5G研发、商用与实现规模化的推动力量之一,致力于发明突破性基础科技,变革了世界连接、计算和沟通的方式。高通芯片事物gpu性能强,在游戏过程中很占优势。兼容性好,是移动cpu里兼容性最好的。

3、英伟达

英伟达始创于1993年美国,是全球知名的电脑显卡供应商,也是较早推出图形处理器技术。Nvidia的芯片架构能够在通用性和效率之间实现一个很好的平衡,而在这个基础上,一套易用且能充分调动芯片架构潜力的软件生态则会让Nvidia在机器学习模型社区拥有巨大的影响力。

4、联发科技

联发科技是台湾上市公司,始创于1997年,是一家专注于创造横跨信息科技、消费电子及无线通信领域的IC解决方案的现代化企业,目前已经是全球第四大半导体公司,旗下研发的芯片一年会驱动超过15亿台智能终端设备。

5、海思

海思是华为技术公司旗下的从1991年就开始专注于制造消费电子、通信等领域的光网络芯的企业,海思芯片虽然大多数自用,但仅是华为手机的销量,已经让海思曾经在国内手机芯片市场超过高通,还曾进入了全球半导体前十大供应商,可见海思实力有多强。

6、博通

博通是全球基础架构技术供应商,创立于1991年美国,专注于提供半导体和基础设施软件解决方案,拥有产品组合多样性、良好的执行力与运营、工程深度等多种优势。 博通的ETC芯片的占市场份额七成,但ETC占博通收入只有可怜的10%左右,ETC芯片在博通集成公司收入占比可以说微不足道,忽略不计的。 

7、AMD

AMD创立于1969年美国硅谷,在2006年时收购了芯片巨头ATI公司,是一家专注于微处理器设计和制造的大型跨国公司,从成立以来,去多诸多突破性的行业创新,公司始终处于半导体产品领域的前沿。

8、TI德州仪器

TI始于1930年的美国,总部位于得克萨斯州的达拉斯,以开发制造半导体和计算机技术而闻名于世,75年来TI公司卓有成效地推动着社会发展。从默默无闻地开发德州油田到在全球市场占据领先地位,TI 在其员工理念的指引下逐步发展壮大。

9、ST意法半导体

ST意法半导体是意大利的SG微电子公司与法国Thomson半导体公司合并而成的,成立于1988年,是目前世界较大的半导体公司,旗下不仅有知识产权含量高的专用产品,还有多领域的创新产品,如安全性智能卡芯片、高性能微控制器等。

10、NXP

NXP源自于荷兰,前身是飞利浦旗下的分支公司,是全球性汽车半导体品牌,全球前十大半导体公司,总部位于荷兰Eindhoven。nxp电源管理芯片可以开发新的工艺、封装和电路设计技术,也将出现性能更好的设备,进步功率密度,延伸电池寿命,减少电磁干扰,增强电源和信号完整性,进步体系安全性,让国际各地的工程师可以立异国际。

以上内容参考:百度百科-英特尔、百度百科-高通、百度百科-NVIDIA、百度百科-联发科、百度百科-深圳市海思半导体有限公司、百度百科-broadcom、百度百科-AMD、百度百科-TI、百度百科-意法半导体、百度百科-恩智浦半导体公司

LED灯和显示器,以及高质量的太阳能电池板诞生于半导体的一场革命,它能有效地将能量转换为光,反之亦然。现在,下一代半导体材料即将问世。在一项新的研究中,研究人员发现,在他们改造照明技术和光电技术的潜力背后,隐藏着古怪的物理现象。将这些新兴所谓“混合半导体”的量子特性与其已有的进行比较,就像是将莫斯科芭蕾舞团比作千斤短跳。由乔治亚理工学院的研究人员领导的一个物理化学家团队称,由量子粒子组成的旋转团在这些新兴材料中波动,可以轻松地创造出非常理想的光电特性,这些相同的性质在现有半导体中是不现实的。

博科园-科学科普:在这些新材料中移动的粒子也参与了材料本身的量子运动,类似于舞蹈者吸引地板与他们一起跳舞。研究人员能够测量舞蹈引起的材料的模式,并将其与新兴材料的量子特性和引入材料的能量联系起来。这些见解可以帮助工程师有效地研究新型半导体。这种新兴材料能够容纳类似于舞者各种古怪的量子粒子运动,这与它在分子水平上的不寻常的灵活性直接相关,就像加入舞蹈的舞池一样。相比之下,现有半导体具有刚性的、直线排列的分子结构,这使得跳舞变成了量子粒子。研究人员检测的混合半导体被称为卤化物有机-无机钙钛矿(HOIP),这将在底部与“混合”半导体名称一起详细解释。

“混合”半导体是将半导体中常见晶体晶格与一层具有创新d性的材料结合在一起。提升机不仅具有独特的光亮度和节能性能,而且易于生产和应用。乔治亚理工大学化学与生物化学学院的教授卡洛斯·席尔瓦说:一个令人信服的优势是,提升机是在低温下制造,并在溶液中进行处理。生产它们所需的能源要少得多,而且可以大批量生产。席尔瓦与乔治亚理工学院和意大利理工学院的Ajay Ram Srimath Kandada共同领导了这项研究。大多数半导体的小批量生产都需要很高温度,而且它们的表面很硬,但可以在起重机上涂上油漆来生产led、激光器,甚至是窗户玻璃,这些玻璃可以发出从海蓝宝石到紫红色的任何颜色的光。

吊装照明可能只需要很少的能源,而太阳能电池板制造商可以提高光电效率,降低生产成本。由佐治亚理工学院领导的研究小组包括来自比利时蒙斯大学和意大利理工学院研究人员。研究结果于2019年1月14日发表在《自然材料》上。这项研究由美国国家科学基金会、欧盟地平线2020、加拿大自然科学和工程研究理事会、丰德魁北克的pour la Recherche和比利时联邦科学政策办公室资助。光电器件中的半导体可以把光转换成电,也可以把电转换成光。研究人员专注于与后者相关的过程:光发射。让一种材料发光的诀窍,从广义上说,就是把能量应用到材料中的电子上,这样它们就能从围绕原子的轨道上获得量子跃迁,然后当它们跳回到空出的轨道上时,就能以光的形式释放出这种能量。

已建立的半导体可以在严格限制电子运动范围的材料区域捕获电子,然后将能量应用到这些区域,使电子一致地进行量子跃迁,在它们一致地跳下来时发出有用的光。这些是量子阱,材料的二维部分限制了这些量子特性,从而产生了这些特殊的光发射特性。有一种可能更具吸引力的发光方式,这也是新型混合半导体的核心优势。一个电子带负电荷,它被能量激发后空出的轨道叫做电子空穴。电子和空穴可以相互旋转形成一种假想粒子,或准粒子,称为激子。激子的正负吸引被称为结合能,这是一种非常高能的现象,这使得激子非常适合发光。当电子和空穴重新结合时,空穴释放出结合能来发光。但通常,激子很难在半导体中保持。

传统半导体中的激子特性只有在极冷温度下才稳定,但在提升过程中,激子性质在室温下非常稳定。激子从原子中释放出来并在物质中移动。此外,HOIP中的激子可以围绕其他激子旋转,形成准粒子,即双激子。还有更多。激子也会围绕材料晶格中的原子旋转。就像电子和电子空穴产生激子一样,激子绕原子核旋转会产生另一种准粒子,叫做极化子。所有这些作用都会导致激子向极化子转变。我们甚至可以说一些激子呈现出一种“极化子”的细微差别。使所有这些动力学更加复杂的是,提升装置充满了正离子和负离子。这些量子舞蹈的华丽对材料本身有着至关重要的影响。

不同寻常的是,材料中的原子与电子、激子、双激子和极化子共舞,在材料中产生了重复的纳米级凹痕,这些凹痕可以作为波型观察到,随着能量的增加,这些凹痕会发生位移和通量。在基态下,这些波型会以某种方式呈现,但随着能量的增加,激子的表现会有所不同。这改变了波浪模式,这就是我们所测量的。这项研究的关键观察结果是,波型随激子类型(激子、双激子、极化子/非极化子)的不同而变化。这些凹痕也会抓住激子,减缓它们在材料中的移动速度,所有这些华丽的动力学可能会影响光发射的质量。

该材料为卤化物有机-无机钙钛矿,是由两个无机晶格层构成的夹层,中间夹有一些有机材料,形成有机-无机杂化材料,量子作用发生在晶格中。中间的有机层就像一层橡皮筋,使水晶格子变成一个摇摆但稳定的舞池。此外,提升机与许多非共价键连接在一起,使材料柔软。晶体的单个单位以一种叫做钙钛矿形式存在,它是一种非常均匀的钻石形状,中间是一种金属,而像氯或碘这样的卤素在点上,因此被称为“卤化物”,在这项研究中,研究人员使用了含有公式(PEA)2PbI4的二维模型。

博科园-科学科普|研究/来自:乔治亚理工学院

Ben Brumfield, Georgia Institute of Technology

参考期刊文献:《Nature Materials》

论文DOI: 10.1038/s41563-018-0262-7

博科园-传递宇宙科学之美


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/8750998.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-20
下一篇 2023-04-20

发表评论

登录后才能评论

评论列表(0条)

保存