最初约年研究核射线在晶体上作
用, 表明射线的存在引起导电现象。但是, 由
于测得的幅度小、存在极化现象以及缺乏合适
的材料, 很长时间以来阻碍用晶体作为粒子探
测器。就在这个时期, 气体探测器象电离室、
正比计数器、盖革计数器广泛地发展起来。
年, 范· 希尔顿首先较实际地讨论了
“ 传导计数器” 。在晶体
上沉积两个电极, 构成一种固体电离室。为分
离人射粒子产生的载流子, 须外加电压。许多
人试验了各种各样的晶体。范· 希尔顿和霍夫
施塔特研究了这类探测器的主要性质, 产生一
对电子一空穴对需要的平均能量, 对射线作用
的响应以及电荷收集时间。并看出这类探测器
有一系列优点由于有高的阻止能力, 人射粒
子的射程小硅能吸收质子, 而
质子在空气中射程为, 产生一对载
流子需要的能量比气体小十倍, 在产生载流子
的数目上有小的统计涨落, 又比气体计数器响
应快。但是, 尽管霍夫施塔特作了许多实验,
使用这种探侧器仍受一些限制, 像内极化效应
能减小外加电场和捕捉载流子, 造成电荷收集
上的偏差。为了避免捕捉载流子, 需外加一个
足够强的电场。结果, 在扩散一结, 或金属
半导体接触处形成一空间电荷区。该区称为耗
尽层。它具有不捕捉载流子的性质。因而, 核
射线人射到该区后, 产生电子一空穴载流子
对, 能自由地、迅速向电极移动, 最终被收
集。测得的脉冲高度正比于射线在耗尽层里的
能量损失。要制成具有这种耗尽层器件是在
年以后, 这与制成很纯、长寿命的半导体
材料有关。
麦克· 凯在贝尔电话实验室, 拉克· 霍罗威
茨在普杜厄大学首先发展了这类探测器。
年, 麦克· 凯用反偏锗二极管探测“ 。的粒
子, 并研究所产生的脉冲高度随所加偏压而
变。不久以后, 拉克· 霍罗威茨及其同事者测
量一尸结二极管对。的粒子, “ , 的刀
粒子的反应。麦克· 凯进行了类似的实验, 得
到计数率达, 以及产生一对空穴一电子对
需要的能量为土。。麦克· 凯还观察到,
加于硅、锗一结二极管的偏压接近击穿电压
时, 用一粒子轰击, 有载流子倍增现象。在普
杜厄大学, 西蒙注意到用粒子轰击金一锗二
极管时产生的脉冲。在此基础上, 迈耶证实脉
冲幅度正比于人射粒子的能量, 用有效面积为
二“ 的探测器, 测。的粒子, 得到的分
辨率为。艾拉佩蒂安茨研究了一结二极
管的性质, 载维斯首先制备了金一硅面垒型探
测器。
年以后, 许多人做了大量工作, 发表
了广泛的著作。沃尔特等人讨论金一锗面垒型
探测器的制备和性质, 制成有效面积为“ 的
探测器, 并用探测器, 工作在,
测洲的粒子, 分辨率为。迈耶完成一
系列锗、硅面垒型探测器的实验用粒子轰
击。年, 联合国和欧洲的一些实验室,
制备和研究这类探测器。在华盛顿、加丁林堡、
阿什维尔会议上发表一些成果。如一结和面
垒探测器的电学性质, 表面状态的影响, 减少
漏电流, 脉冲上升时间以及核物理应用等等。
这种探测器的发展还与相连的电子器件有很大
关系。因为, 要避免探测器的输出脉冲高度随
所加偏压而变, 需一种带电容反馈的电荷灵敏
放大器。加之, 探测器输出信号幅度很小, 必
需使用低噪声前置放大器, 以提高信噪比。为
一一满足上述两个条件, 一般用电子管或晶体管握
尔曼放大器, 线幅贡献为。在使用场效
应晶体管后, 进一步改善了分辨率。
为了扩大这种探测器的应用, 需增大有效
体积如吸收电子需厚硅。采用
一般工艺限制有效厚度, 用高阻硅、高反偏压
获得有效厚度约, 远远满足不了要求。因
此, 年, 佩尔提出一种新方法, 大
大推动这种探测器的发展。即在型半导体里
用施主杂质补偿受主杂质, 能获得一种电阻率
很高的材料虽然不是本征半导体。因为铿
容易电离, 铿离子又有高的迁移率, 就选铿作
为施主杂质。制备的工艺过程大致如下先把
铿扩散到型硅表面, 构成一结构, 加上反
向偏压, 并升温, 锉离
一
子向区漂移, 形成
一一结构, 有效厚度可达。这种探测器
很适于作转换电子分光器, 和多道幅度分析器
组合, 可研究短寿命发射, 但对卜射线的效
率低, 因硅的原子序数低。为克服这一
点, 采用锉漂移入锗的方法锗的原子序数为
。年, 弗莱克首先用型锗口,
按照佩尔方法, 制成半导体探测器,
铿漂移长度为, 测‘“ 、的的
射线, 得到半峰值宽度为
直到年以前, 所有的探测器都是平面
型, 有效体积受铿通过晶体截面积到“
和补偿厚度的限制获得补偿厚度约, 漂
移时间要个月, 因此, 有效体积大于到
” 是困难的。为克服这种缺点, 进一步发
展了同轴型探测器。年, 制成高分辨率大
体积同轴探测器。之后, 随着电子工
业的发展而迅速发展。有效体积一般可达几十
“ , 最大可达一百多“ , 很适于一、一射
线的探测。年以后广泛地用于各个部门。
最近几年, 半导体探测器在理论研究和实际应
用上都有很大发展。
半导体激光器解析半导体物理学的迅速发展及随之而来的晶体管的发明,使科学家们早在50年代就设想发明半导体激光器,60年代早期,很多小组竞相进行这方面的研究。在理论分析方面,以莫斯科列别捷夫物理研究所的尼古拉·巴索夫的工作最为杰出。在1962年7月召开的固体器件研究国际会议上,美国麻省理工学院林肯实验室的两名学者克耶斯(Keyes)和奎斯特(Quist)报告了砷化镓材料的光发射现象,这引起通用电气研究实验室工程师哈尔(Hall)的极大兴趣,在会后回家的火车上他写下了有关数据。回到家后,哈尔立即制定了研制半导体激光器的计划,并与其他研究人员一道,经数周奋斗,他们的计划获得成功。像晶体二极管一样,半导体激光器也以材料的p-n结特性为基础,且外观亦与前者类似,因此,半导体激光器常被称为二极管激光器或激光二极管。早期的激光二极管有很多实际限制,例如,只能在77K低温下以微秒脉冲工作,过了8年多时间,才由贝尔实验室和列宁格勒(现在的圣彼得堡)约飞(Ioffe)物理研究所制造出能在室温下工作的连续器件。而足够可靠的半导体激光器则直到70年代中期才出现。半导体激光器体积非常小,最小的只有米粒那样大。工作波长依赖于激光材料,一般为0.6~1.55微米,由于多种应用的需要,更短波长的器件在发展中。据报导,以Ⅱ~Ⅳ价元素的化合物,如ZnSe为工作物质的激光器,低温下已得到0.46微米的输出,而波长0.50~0.51微米的室温连续器件输出功率已达10毫瓦以上。但迄今尚未实现商品化。光纤通信是半导体激光可预见的最重要的应用领域,一方面是世界范围的远距离海底光纤通信,另一方面则是各种地区网。后者包括高速计算机网、航空电子系统、卫生通讯网、高清晰度闭路电视网等。但就目前而言,激光唱机是这类器件的最大市场。其他应用包括高速打印、自由空间光通信、固体激光泵浦源、激光指示,及各种医疗应用等。晶体管利用一种称为半导体的材料的特殊性能。电流由运动的电子承载。普通的金属,如铜是电的好导体,因为它们的电子没有紧密的和原子核相连,很容易被一个正电荷吸引。其它的物体,例如橡胶,是绝缘体 --电的不良导体--因为它们的电子不能自由运动。半导体,正如它们的名字暗示的那样,处于两者之间,它们通常情况下象绝缘体,但是在某种条件下会导电。对半导体的早期研究集中在硅上,但硅本身不能发射激光。1948年贝尔实验室的William Schockley,Walter Brattain 和 John Bardeen 发明的晶体管。这一发明推动了对其它半导体裁的研究发展进程。它也为利用半导体中的发射激光奠定了概念性基础。1952年,德国西门子公司的 Heinrich Welker指出周期表第III和第V列之间的元素合成的半导体对电子装置有潜在的用途。其中之一,砷化镓或GaAs,它在寻找一种有效的通讯激光中扮演了重要角色。对砷化镓(GaAs)的研究涉及到三个方面的研究:高纯度晶体的叠层成长的研究,对缺陷和掺杂剂(对一种纯物质添加杂质,以改变其性能)的研究以及对热化合物稳定性的影响的分析。有了这些研究成果,通用电器,IBM和麻省理工大学林肯实验室的研究小组在1962年研制出砷化镓(GaAs)激光发生器。但是有一个老问题始终悬而未决:过热。使用单一半导体,(通常是GaAs)的激光发生器效率不是很高。它们仍需大量的电来激发激光作用,而在正常的室温下,这些电很快就使它们过热。只有脉冲 *** 作才有可能避免过热(脉冲 *** 作:电路或设备在能源以脉冲方式提供时的工作方式),可是通过这种工作方式不能通讯传输。科学家们尝试了各种方法来驱热一例如把激光发生器放在其它好的热导体材料上,但是都没成功。然后在 1963年,克罗拉多大学的Herbert Kroemer提出了一种不同的的方式--制造一个由半导体"三明治"组成的激光发生器,即把一个薄薄的活跃层嵌在两条材料不同的板之间。把激光作用限制在薄的活跃层里只需要很少的电流,并会使热输出量保吃持在可控范围之内。这样一种激光发生器不是只靠象把奶酪夹在两片面包那样,简单地塞进一个活跃层就能制造出来的。半导体晶体中的原子以点阵的方式排列,由电子组成化学键。要想制造出一个在两个原子之间有必要电子键连接的多层半导体,这个装置必须是由一元半导体单元组成,我们称之为多层晶体。 1967年,贝尔实验室的研究员Morton Panish 和 Izuo Hayashi 提出了用GaAs的修改型--即其中几个铝原子代替一些镓,一种称为"掺杂"的过程-- 来创造一种合适的多层晶体的可能性的建议。这种修改型的化合物,AlGaAs, 的原子间隔和GaAs相差不到1000分之一。研究人员提出,把 AlGaAs种植在GaAs 薄层的任何一边,它都会把所有的激光作用限制在GaAs层内。在他们面前,还要有几年的工作,但是通向"不间断状态" 激光发生器-在室温下仍能持续工作的微型半导体装置-的大门已经敞开了。还有一个障碍:怎样发射跨过长距离的光信号。长波无线电波可以很容易穿透浓雾和大雨,在空气中自由传播,但是短波激光会被空气中的水蒸气和其它颗粒反射回来,以至于不是被分散就是被阻挡住。一个多雾的天气会使激光通讯联络终断,因此光需要一个类似于电话线的导管。
2019年5月,美国商务部将华为列入实体清单,禁止美国企业向华为出口技术和零部件;2020年5月,美国进一步升级对华为贸易禁令,要求凡使用了美国技术或设计的半导体芯片出口华为时,必须得到美国政府的许可证,进一步切断华为通过第三方获取芯片或代工生产的渠道。
此前,高通、英特尔和博通等美国公司都向华为提供芯片,用于华为智能手机和其他电信设备,华为手机使用谷歌的安卓 *** 作系统。华为自研的麒麟高端手机芯片,也依赖台积电代工。随着美国芯片禁令实施,华为手机业务遭遇重创,消费者业务收入大幅下滑,海外市场拓展也受到影响。
美国凭借芯片技术优势对中国企业“卡脖子”,使半导体产业陡然成为中美 科技 竞争的风暴眼。“缺芯”之痛,突显了中国半导体产业的技术短板。它如一记振聋发聩的警钟,惊醒国人看清国际 科技 竞争的残酷现实。
半导体产业是 科技 创新的龙头和先导,在信息 科技 和高端制造中占据核心地位。攻克半导体核心技术难题,解决高端芯片受制于人的现状,成为中国高 科技 发展和产业升级的当务之急。
全球半导体版图
半导体产业很典型地体现了供应链的全球化,各国在半导体产业链上分工协作,相互依赖。美国、韩国、日本、中国、欧洲等国家或地区发挥各自优势,共同组成了紧密协作的全球半导体产业链。
根据美国半导体行业协会发布的最新数据,美国的半导体企业销售额占据全球的47%,排名第二的是韩国,占比为19%,日本和欧盟半导体企业销售额占比均为10%,并列第三。中国台湾和中国大陆半导体企业销售额占比分别为6%和5%。
具体来看,美国牢牢控制半导体产业链的头部,包括最前端EDA/IP、芯片设计和关键设备等。具体而言,在全球产业链总增加值中,美国在EDA/IP上,占据74%份额;在逻辑芯片设计上,占据67%;在存储芯片设计上,占据29%;在半导体制造设备上,占据41%。
日本在芯片设计、半导体制造设备、半导体材料等重要环节掌握核心技术;韩国在存储芯片设计、半导体材料上发挥关键作用;欧洲在芯片设计、半导体制造设备和半导体材料上贡献突出;中国则在晶圆制造上发挥重要作用。
中国大陆在全球晶圆制造(后道封装、测试)增加值占比高达38%;中国台湾在全球半导体材料、晶圆制造(前道制造、后道封装、测试)增加值占比分别达到22%和47%。
以上国家和地区构成了全球半导体产业供应链的主体。
芯片是人类智慧的结晶,芯片制造是全球顶尖的高端制造产业之一,是典型的资本密集和技术密集行业。制造的过程之复杂、技术之尖端、对制造设备的苛刻要求,决定了芯片产业链的复杂性。半导体制造中的大部分设备,包含了数百家不同供应商提供的模块、激光、机电组件、控制芯片、光学、电源等,均需依托高度专业化的复杂供应链。每一个单一制造链条都可能汇集了成千上万的产品,凝聚着数十万人多年研发的积累。
芯片技术也涉及广泛的学科,需要长时期的基础研究和应用技术创新的成果累积。举例来说,一项半导体新技术方法从发布论文,到规模化量产,至少需要10-15年的时间。作为全球最先进的半导体光刻技术基础的极紫外线EUV应用,从早期的概念演示到如今的商业化花费了将近40年的时间,而EUV生产所需要的光刻机设备的10万个零部件来自全球5000多家供应商。
芯片制造的复杂性,创造了一个由无数细分专业方向组成的全球化产业链。在半导体市场中,专业的世界级公司通过几十年有针对性的研发,在自己擅长的领域建立了牢固的市场地位。比如,荷兰ASML垄断着世界光刻机的生产;美国高通、英特尔、韩国三星、中国台湾的台积电等也都形成了各自的技术优势。目前全世界最先进制程的高端芯片几乎都由台积电和三星生产。
中美芯片供应链各有软肋
“缺芯”,不仅困扰着中国企业。
自去年下半年以来,受新冠疫情及美国贸易禁令干扰,芯片产能及供应不足,全球信息产业和智能制造都遭遇了严重的“芯片荒”。
随着新一轮新冠疫情在东南亚蔓延, 汽车 行业芯片短缺进一步加剧,全球三家最大的 汽车 制造商装配线均出现中断。丰田称 9 月全球减产 40%。美国车企也不能幸免,福特 汽车 旗下一家工厂暂停组装 F-150 皮卡,通用 汽车 北美地区生产线停工时间也被迫延长。
蔓延全球的芯片荒,迫使各国对全球半导体供应链的安全性、可靠性进行重新审视和评估。中美两个大国在半导体供应链上各有优势,也各有软肋。
中国芯片产业起步较晚,但近年来加速追赶。根据中国半导体行业协会统计,2020年中国集成电路产业销售额为8848亿元,同比增长17%,5年增长了超过一倍。其中,设计业销售额为3778.4亿元,同比增长23.3%;制造业销售额为2560.1亿元,同比增长19.1%;封装测试业销售额2509.5亿元,同比增长6.8%。中国2020年出口集成电路2598亿块,出口金额1166亿美元,同比增长14.8%。
中国芯片核心技术与美国有较大差距,主要突破在芯片设计领域,芯片设计水平位列全球第二。在制造的封测环节也不是我们的短板。中国芯片制造的短板主要在三方面:核心原材料不能自己自足、芯片制造工艺与国际领先水平有较大差距、关键制造设备依赖进口。
由于不能独立完成先进制程芯片的生产制造,大量高端芯片依赖进口。2020年中国进口芯片5435亿块,进口金额3500.4亿美元。
美国是世界芯片头号强国,拥有世界领先的半导体公司,但其核心能力是主导芯片产业链的前端,包括设计、制造设备的关键技术等,但上游资源和制造能力也依赖国外。美国在全球半导体制造市场的市占率急速下降,从 1990 年 37% 滑落至目前 12%左右。
波士顿咨询公司和美国半导体行业协会在今年4月联合发布的《在不确定的时代加强全球半导体产业链》的报告显示,若按设备制造/组装所在地统计,2019年中国大陆半导体企业销售额占比高达35%;美国则排名第二,销售额占比为19%。
世界芯片的主要制造产能集中在亚洲, 2020 年中国台湾半导体产能全球占比为 22%,其次是韩国 21%,日本和中国大陆皆为 15%。这意味着美国在芯片的制造和生产环节,也存在很大的脆弱性。这也是伴随东南亚疫情爆发导致芯片产业链产能受限,美国同样遭遇“芯片荒”的原因。
对半导体产业链脆弱性的担忧,推动美国加大对半导体产业的投资和政策扶持。今年5月美国参议院通过一项两党一致同意的芯片投资法案,批准了520亿美元的紧急拨款,用以支持美国半导体芯片的生产和研发,以提升美国国内半导体产业链的韧性和竞争力。今年2月24日,美国总统拜登签署一项行政命令,推动美国加强与日本、韩国及中国台湾等盟国/地区合作,加速建立不依赖中国大陆的半导体供应链。
除了产能问题,美国在全球半导体竞争中的另一个软肋就是对中国市场的依赖。中国是全球最大的半导体需求市场,每年中国半导体的进口额都超过3000亿美元,大多数美国半导体龙头企业至少有25%的销售额来自中国市场。可以说,中国是美国及全球主要半导体供应商的最大金主。如果失去中国这个最富活力、最具成长性的市场,那么依赖高资本投入的美国各主要芯片供应商的研发成本将难以支撑,影响其研发投入及未来竞争力。
这从另一方面说,恰是中国的优势,中国庞大的市场需求和发展空间,足以支撑芯片产业链的高强度资本投入与技术研发,并推动技术和产品迭代。
“中国芯”提速
随着中国推进《中国制造2025》,芯片制造一直是中国 科技 发展的优先事项。如今,美国在芯片供应和制造上进行霸凌式断供,使中国构建自主可控、安全高效的半导体产业链的目标更加紧迫。
客观上,半导体产业链需要各国协作,这从成本和技术进步角度,对各国都是互利共赢。但美国的断供行为改变了传统的商业与贸易逻辑。在大国竞争的背景下,对具有战略意义的半导体和芯片产业链,安全、可靠成为主导的逻辑。
中国要成为制造强国,实现在全球产业链、价值链的跃升,摆脱关键技术受制于人的困境,芯片制造这道坎儿就必须跨过。
随着越来越多的中国高 科技 企业被列入美国实体清单,迫使半导体产业链中的许多中国企业不得不“抱团取暖”,携手合作,努力寻求供应链的“本土化”。“中国芯”突围,成为中国 科技 界、产业界不得不面对的一场“新的长征”。中国半导体产业进入攻坚期,也由此迎来发展的重大战略机遇期。
在国家“十四五”规划和2035远景目标纲要中,把 科技 自立自强作为创新驱动的战略优先目标,致力打造“自主可控、安全高效”的产业链、供应链;国家将集中资金和优势 科技 力量,打好关键核心技术攻坚战,在卡脖子领域实现更多“由零到一”的突破。国家明确提出到2025年实现芯片自给率70%的目标。
2020年8月,国务院印发《新时期促进集成电路产业和软件产业高质量发展的若干政策》,瞄准国产芯片受制于人的短板,在投融资、人才和市场落地等方面进一步加大政策支持,助力打通和拓展企业融资渠道,加快促进集成电路全产业链联动,做大做强人才培养体系等。
全国多地制定半导体产业发展规划和扶持政策,积极打造半导体产业链。长三角地区是我国半导体产业重点聚集区,深圳市则是珠三角地区集成电路产业的龙头,京津冀及中西部地区的半导体产业也正在加快布局。
作为中国创新基地,上海市政府6月21日发布《战略性新兴产业和先导产业发展“十四五”规划》,其中集成电路产业列为第一位的发展项目,提出产业规模年均增速达到20%左右,力争在制造领域有两家企业营收进入世界前列,并在芯片设计、制造设备和材料领域培育一批上市企业。
上海市的规划中,对芯片制造也制定出具体目标和实施路径:加快研制具有国际一流水平的刻蚀机、清洗机、离子注入机、量测设备等高端产品;开展核心装备关键零部件研发;提升12英寸硅片、先进光刻胶研发和产业化能力。到2025年,基本建成具有全球影响力的集成电路产业创新高地,先进制造工艺进一步提升,芯片设计能力国际领先,核心装备和关键材料国产化水平进一步提高,基本形成自主可控的产业体系。
上海联合中科院和产业龙头企业,投资5000亿元,打造世界级芯片产业基地:东方芯港。目前东方芯港项目已引进40余家行业标杆企业,初步形成了覆盖芯片设计、特色工艺制造、新型存储、第三代半导体、封装测试以及装备、材料等环节的集成电路全产业链生态体系。
在国家政策指引和强劲市场的驱动下,国家、企业、科研机构、大学、 社会 资金等集体发力,中国芯片行业正展现出空前的发展动能和势头。
在外部倒逼和内部技术提升的共同作用下,中国芯片产业第一次迎来资金、技术、人才、设备、材料、工艺、设计、软件等各发展要素和环节的整体爆发。国产芯片也在加速试错、改造、提升,正在经历从“不可用”到“基本可用”、再到“好用”的转变。
中国终将重构全球半导体格局
中国芯片制造重大技术突破接踵而至:
中微半导体公司成功研制了5纳米等离子蚀刻机。经过三年的发展,中微公司5纳米蚀刻机的制造技术更加成熟。该设备已交付台积电投入使用。
上海微电子已经成功研发出我国首款28纳米光刻机设备,预计将在2021年交付使用,实现了光刻机技术从无到有的突破。
中芯国际成功推出N+1芯片工艺技术,依托该工艺,中芯国际芯片制程不断向新的高度突破,同时成熟的28纳米制程扩大产能。
7月29日,南大光电承担的国家 科技 重大专项“极大规模集成电路制造装备及成套工艺”之光刻胶项目通过了专家组验收。
8月2日青岛芯恩公司宣布8寸晶圆投片成功,良率达90%以上,12寸晶圆厂也将于8月15日开始投片。
2017年,合肥晶合集成电路12寸晶圆制造基地建成投产,至2021年合肥集成电路企业数量已发展到近280家。
中国半导体行业集中蓄势发力,在关键技术和设备等瓶颈领域,从无到有,由易入难,积小成而大成,关键技术和工艺水平正在取得整体跃迁。
小成靠朋友,大成靠对手。某种意义上,我们应该感谢美国的遏制与封锁,逼迫我们在芯片和半导体行业加速摆脱对外部的依赖。
回望新中国 科技 发展史,凡是西方封锁和控制的领域,也是中国技术发展最快的领域:远的如两d一星、核潜艇,近的如北斗导航系统以及登月、空间站、火星探测等航天工程。在外部压力的逼迫下,中国 科技 与研发潜能将前所未有地爆发。
实际上,中国的整体 科技 实力与美国的差距正在迅速缩小。在一些尖端领域,比如高温超导、纳米材料、超级计算机、航天技术、量子通讯、5G技术、人工智能、古生物考古、生命科学等领域已经居于世界前沿水平。
英国世界大学新闻网站8月29日刊发分析文章,梳理了中国 科技 水平的颠覆性变化:
在创新领域,中国在全球研发支出排名第二,全球创新指数在中等收入国家中排名第一,正在从创新落伍者转变为创新领导者。
人才方面,拥有庞大的高端理工人才库,中国已是知识资本的重要创造者,美中 科技 关系从高度不对称转变为在能力和实力上更加对等。
技术转让方面,中国从单纯的学习者和技术接收者,转变为技术转让的来源和跨境技术标准的塑造者。
人才回流,中国正在扭转人才流失问题,积极从世界各地招募科学和工程人才。
这些变化表明,中国 科技 整体实力已经从追赶转变为能够与国际前沿竞争,由全球 科技 中的边缘角色转变为具有重要影响力的国家之一。
中国的基础研究水平也在突飞猛进。据《日经新闻》8月10日报道,在统计2017年至2019年间全球被引用次数排名前10%的论文时,中国首次超过美国,位居榜首位置。报道还着重指出中国在人工智能领域相关论文总数占据20.7%,美国为19.8%,显示中国在人工智能领域的研究成果正在超越美国。
另有日本学者在研究2021QS世界大学排名后,发现世界排名前20的理工类大学中,中国有7所上榜,清华大学居于第一位,而美国有5所。如果进一步细分到“机械工程”、“电气与电子工程”,中国大学在排名前20中的数量更是全面碾压美国。
芯片技术反映了一个国家整体 科技 水平和综合研发实力,中国的基础研究、应用研究、人才实力具备了突破芯片核心技术的基础和能力。
正如世界光刻机龙头企业——荷兰ASML总裁温尼克今年4月接受采访时所说:美国不能无限打压中国,对中国实施出口管制,将逼迫中国寻求 科技 自主,现在不把光刻机卖给中国,估计3年后中国就会自己掌握这个技术。“一旦中国被逼急了,不出15年他们就会什么都能自己做。”
温尼克的忧虑,正在一步步变成现实。全球半导体产业正进入重大变革期,中国在芯片制造领域的发愤图强,正在改写世界半导体产业的竞争格局。
中国的市场优势加上国家政策优势、资金优势以及基础研究的深入,打破美国在芯片制造领域的技术垄断和封锁,这一天不会太遥远。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)