陈星弼著 南京:东南大学出版社 出版日期:1990
1陈星弼,关于半导体漂移三极管在饱和区工作时的储存时间问题,物理学报,1959,15(7 ):353~367。
2陈星弼,一维不均匀介质中的镜像法,成都电讯工程学院学报,1963,4(3):76~84。
3陈星弼,表面复合对半导体中非平衡载流子漂移及扩散的影响,成都电讯工程学院学报, 1963,4,100。
4陈星弼、易明光,论晶体管中电荷控制法的基础,第二届四川省电子学会年会论文集, 1964,168~185。
5陈星弼,小注入下晶体管IC-VBE特性的指数因子的研究,物理学报,1978,2(1):10~ 21。
6Xingbi Chen,Chenming Hu,Optimum Doping Profiles of Power MOSFETs Epitaxial Layer,IEEE TransOn Electron Devices,1982,ED-29(6):985~987.
7XBChen,Best Uniform Surface Doping in the Drift Region of Offset-Gate Power MOSFETs With Deep Junctions,Procof International Semiconductor and Integrated Circuit Technology,1986,383~385.
8陈星弼,P-N+结有场板时表面电场分布的简单表示式,电子学报,1986,14(1):36~43 。
9陈星弼、蒋旭,突变平面结表面电场的近似公式,成都电讯工程学院学报,1986,15(3) :34~40。
10XBChen,ZQSong,ZJLi,Optimization of the Drift Region of Power MOSFETs with Lateral Structures and Deep Junctions,IEEE Transon Electron Devices,1987,ED-34(11),2344~2350.
11陈星弼,场限环的简单理论,电子学报,1988,16(3):6~9。
12XBChen,ZJLi,XJiang,TwoDimensional Numerical Analysis of Field Profiles in HighVoltage Junction Devices,Chinese Journal of Semiconductor,1988,9( 2),181~187.
13陈星弼、李肇基、蒋旭,高压半导体器件电场的二维数值分析,半导体学报,1988,9(3 ):255~260。
14陈星弼、杨功铭,横向结构结深功率MOSFET漂移区的优化设计,微电子学,1988。
15陈星弼,表面电荷对具有场限环的P+-N结电场及电位分布的影响,电子学报,1988,16 (5):14~19。
16陈星弼、李肇基、宋志庆,高压半导体器件电场的二维数值分析,成都电讯工程学院学报 ,1988,17(1):46~53。
17Chen Xingbi,Li Zhaoji,Li Zhongmin,On Breakdown Voltage of Abrupt Junction with Cylindric Edges,Chinese Journal of Semiconductors,1989,10(2):233~ 237.
18陈星弼、李肇基、李忠民,关于圆柱边界突变结的击穿电压,半导体学报,1989,10(6 ):463~466。
19Chen Xingbi,A Theory of Floating Field-Limiting Rings Regarding the Effect of Surface Charges,Acta Electronics Sinica,Supplement,1989,105~111.
20Chen Xingbi,Analysis and Design Guidelines of JTTs Used in Planar Technology,Proc.of ICSICT’89会议特邀报告,1989,456~458.
21陈星弼,功率MOS及HVIC的进展,第六届全国半导体集成技术与硅材料学术年会特邀报告 ,1989。
22Chen Xingbi,A Simple Description of Diffused Impurity Distribution of an Instantaneous Source Through a Window of a Mask,Proc,of ICSICT’98,1989,241~ 243.
23Chen Xingbi,Li Zhaoji,Li Zhongmin,Field Profiles and Breakdown Voltages of Elliptic Cylindric Abrupt Junction,Procof ICSCT’98,1989,459~461.
24陈星弼,MOS型功率器件,电子学报,1990,18(5):97~105。
25Xingbi Chen,Power MOST and Merged Devices,Procof Congress of German Chinese Electronics,BerlinOffenbach,1991,339~345.
26陈星弼,结终端技术,第七届全国半导体集成技术与硅材料学术年会特邀报告,1991, 5~6。
27XBChen,BZhang,ZJLi,Theory of Optimum Design of ReverseBiased p n Junctions Using Resistive Field Plates and Variation Lateral Doping,Solid State Electronics,1992,35(9):1365~1370.
28陈星弼、曾军,扩散平面结反偏压下的电场分布与击穿电压,电子科技大学学报,1992, 21(5):491~499。
29陈星弼,半导体器件与微电子学的发展动向,当代电子,四川省电子学会主编,1992,84 ~94。
30XBChen,PAMawby,CATSalama,MSTowers,JZeng,KBoard,Latera l HighVoltage Devices Using an Optimized Variational Lateral Doping,IntJ Electronics,1996,80(3),449~459.
31Xingbi Chen,KOSin,Min Zhang,Bin Wang,An Analytical Model for Electric Field Distribution of Positively Beveled Abrupt PN Junctions,IEEE TransElectron Devices,1997,ED-44,5:869~873.
32陈星弼,用于灵巧功率集成电路的创新型横向器件,第二届中国西部地区微电子技术年会 论文集(四川、 重庆、 广西、 甘肃、 云南六地市),1998,1~7。
33Chen Xingbi,Theory of a Novel Voltage Sustaining (CB) Layer for Power Devices,Chinese Journal of Electronics,1998,7( 3),211~216.
34XBChen,PAMawby,KRoad,CATSalama,Theory of a Novel Voltage Sustaining Layer for Power Devices,Microelectronics Journal,1998,29 (12):1055~1011.
35陈星弼、叶永萌,对高等学校人才培养的思考和看法,电子高教研究,1998,2、3,13~ 15。
36Xingbi Chen,Breakthrough to the Silicon Limit of Power Devices (Invite Paper),5th International Conference on Solid-State and Integrated Circuit Technology Proceedings, IEEE Press,1998,141~144.
37陈星弼、叶星宁、唐茂成、王新、苏秀娣、单成国,新型CMOS全兼容二极管,电子科技大 学学报,1999。
38Xingbi Chen,Xin Wang,KOSin,A Novel HighVoltage Sustaining Structure with Buried Oppositely Doped Regions,IEEE Transon Electron Devices,2000,ED- 47(6):1280~1285.
39Chen Xingbi,Optimum Design Parameters for Different Patterns of CBStructure,Chinese Journal of Electronics,2000,9,(1):6~11.
40陈星弼,由半导体微电子技术引起的第一次电子革命及第二次电子革命,电子科技大学学 报社科版,2000,2(2):20~25。
41陈星弼,第一次电子革命及第二次电子革命,微型电脑应用,2000,16(8)。
42陈星弼,科技为本 创新为魂——由半导体技术引起的重大革命,世界电子元器件,2000 。
43陈星弼、蒲慕名、张瑞敏、车俊、尚选玉、于庆成、杜彭,我的创新与财富观,中国青年 科技,2001。
44Xingbi Chen,KOSin,Optimization of the Specific OnResistance of the COOLMOS,IEEE Transon Electron Devices,2001,ED-48(2):344~348.
45Chen Xingbi,Theory of the Switching Response of CBMOST,Chinese Journal of Electronics,2001,10( 1):1~6.
46Chen Xingbi,Fan Xuefeng,Optimum VLD Makes SPIC Better and Cheaper,Procof ICSICT’2001,104~108.
47Xingbi Chen,Hongqiang Yang,Min Cheng,New Silicon Limit of Power Devices,Solid-State Electronics,2002,46:1185~1192.
48陈星弼,由半导体微电子技术引起的第一次电子革命及第二次电子革命,第十六届全国电 源技术年会,2005,32~36。
49陈星弼,超结器件,电力电子技术,2008,42(12)。
50Chen Xingbi,Huang Mingmin,A Vertical Power MOSFET with an Interdigitated Drift Region Using High-k Insulator,IEEE Transactions on Electron Devices,2012 ,59 (9), 2430~2437. 1 OptimizationoftheDriftRegionofPowerMOSFET`swithLateralStructuresandDeepJunctions
2 一维不均匀媒质中的景象法
3 小注入下晶体管Ic-V_be特性的指数因子的研究
4 论晶体管电荷控制法的基础
5 关于圆柱边界突变结的击穿电压
6 关于半导体漂移三极管在饱和区工作的储存时间问题
7 TheoryoftheSwitchingResponseofCBMOST
8 Theoryofoptimumdesignofreverse-biasedp- njunctionssuingresistivefieldplatesandvariationlateraldoping
9 OptimumVLDmakesSPICBetterandCheaper
10 OptimumDopingProfileofPowerMOSFETEpitaxialLayer
11 OptimumDesignParametersforDifferentPatternsofCB-Structure
12 OptimizationoftheSpecificOn-ResistanceoftheCOOLMOS~TM
13 New“siliconlimit”ofpowerdevices
14 Lateralhigh-voltageusinganoptimizedvariationallateraldoping
15 Breakthroughtothe“Siliconlimit”ofPowerDevices
16 Analysisanddesignguidelinesofjit`susedinplanartechnology
17 AnAnalyticalModelforElectricFieldDistributionofPositivelyBeveledAbruptPNJunctions
18 ATheoryofFloatingField-LimitingRingsRegardingtheEffectofSurfaceCharges
19 Asimpledescriptionofdiffusedimpuritydistributionofaninstantaneoussourcethroughawindowofamask
20 ANovelHigh-VoltageSustainingStructurewithBuriedOppositelyDopedRegions 陈星弼 在新型功率(电力电子)器件及其集成电路这一极其重要领域中,做出了一系列重要的贡献与成就。他率先在中国提出立项并作为第一主研完成了VDMOST、IGBT、Offset-GateMOST、LDMOST、SPIC及RESURF、SIPOS等器件及有关技术。他对垂直型功率器件耐压层及横向型功率器件的表面耐压区唯一地作出了优化设计理论且得到实际应用。对功率器件的另一关键技术——结终端技术——作出了系统的理论分析及最优化设计方法并应用在各种电力电子器件的设计中取得良好的效果。他还提出了斜坡场板这一新结构的理论。他的三项重要发明能使电力电子器件在一个新的台阶上发展。这些发明打破了传统极限理论的约束,使器件的电学性能得到根本性的改进。第一种第二种发明突破了高速功率MOS高压下导通电阻极限理论,得到新的极限关系。第一种发明被Siemens公司实现,98年在国际电子器件会议(旧金山)发表。第二种发明及第三种发明已在国内实验成功。根据第三种发明来制造高压(功率)集成电路中的横向器件,可以在工艺上和常规的CMOS及BiCMOS工艺兼容,使这种电路不仅性能优越,而且成本节省,可立足国内,并正在走向产品开发。他作为唯一(或第一)作者(或主研)已在IEEE等学术刊物发表论文40多篇,出版著作五种(六册),取得美国及中国发明专利权七项,获得国家发明奖及国家科技进步奖二项,省部级奖十三项。
晶体管发明者——巴丁1947年12月23日,37岁的美国物理学家肖克莱和他的合作者在著名的贝尔实验室向人们展示了第一个半导体电子增幅器,即最初的晶体管.晶体管的发明成为人类微电子革命的先声.
如果时光倒流几十年,晶体管还没有被发明,那么今天的人们大概还在使用电子管收音机.这种收音机普遍使用五六个电子管,输出功率只有1瓦左右,而耗电却要四五十瓦,功能也很有限.打开电源开关,要等1分多钟才会慢慢地响起来.而现在,袖珍半导体收音机早就成了青少年的随身物了.我们在使用现代科技产品时,真应该对这些产品的发明者心存谢意.
你知道晶体管是谁发明的吗?它是美国物理学家肖克莱和他的同事巴丁及布拉顿一同发明的.这项影响深远的发明,让他们共同获得了1956年度诺贝尔物理学奖.
1947年圣诞节前夕,37岁的物理学家肖克莱写了一张言辞有些羞怯的便柬,邀请美国新泽西州中部贝尔电话实验室的几位同僚到他的实验室,观察他和他的合作者巴丁及布拉顿最近取得的“一些成果”.这三位发明家演示了电流通过一个名为“晶体管”的小原器件.尽管用现代标准衡量,这个原器件原始且笨拙,但它在当时却是一个举世震惊的突破.因为真空管——最初的电子增幅器,虽然加快了无线电、电话、电视机等的发展,但是这种真空管体积大、耗能多,拖了发展复杂电子机器的后腿.电子机械师们早就期待着一种可靠、小型而又便宜的替代装置了.
晶体管的发明,终于使由玻璃封装的、易碎的真空管有了替代物.同真空管相同的是,晶体管能放大微弱的电子信号;不同的是,它廉价、耐久、耗能小,并且几乎能够被制成无限小.1999年9月,法国原子能委员会的科学有研制出当今世界上最小的晶体管,这种晶体管直径仅20纳米(1纳米为1米的10亿分之一),科学家须用电子显微镜把它放大50万倍,方能取得它1厘米大的照片.把20纳米的晶体管放进一片普通集成电路,形同一根头发放在足球场的中央.——同工作中能产生巨大热量的真空管相反,晶体管能在冷却状态下工作.因为它采用了半导体——一种处于绝缘体(如玻璃)与良导体(如铁和金)之间的固态导体.肖克莱等人的成功,取决于他们确定了合适的使用材料(开始是金属元素锗,然后是硅),用这种材料,只需很少量,晶体管就能像真空管一样,对电子产生相同的作用.在带有正、负电荷的接头或障碍物两侧就可得“晶体管效应”;障碍物的作用因来自第三方的微小电流的使用而明显地减弱.这个结果就像拧开了开关、使巨大电流通过障碍物,把第三方的信号放大到4万倍.
晶体管诞生后,首先在电话设备和助听器中使用.逐渐地,它在任何有插座或电池的东西中都能发挥作用了.将微型晶体管蚀刻在硅片上制成的集成电路,在20世纪50年代发展起来后,以芯片为主的电脑很快就进入了人们的办公室和家庭.
因为超导体没有电阻,在电流流过时就不会因为发热而损失电能,因此采用超导电线可以实现远距离无损耗输电,这样电站就可以远离居住区,使我们的生活区更加洁净。 超导体中每平方厘米可以流过几十万安培的强大电流,因而可产生很强的磁场而且消耗的电能很少。日本用超导体产生17。5万高斯的强磁场,加上冷却用电也仅为15KW。这种强磁场是实现受控热核反应的关键之一。 用超导体制成的超导发电机的功率可比目前发电机高100倍以上;超导磁悬浮列车的时速每小时已达550公里;高速超导电子计算机的计算速度每秒可达几百亿次以上。 超导体有可能为我们这个世界带来新的技术革命,所以目前世界各国都把超导研究列为重点攻关项目,以期早日迈入超导时代。迄今为止,已有8位科学家因为研究超导体而获得了诺贝尔奖。 半导体材料 我们日常用的铜、铁、铝等,都很容易导电,因而叫做导体;而橡胶、塑料等几乎不导电,因而叫做绝缘体。如果某物质不是导体,那它就一定是绝缘体吗?答案是否定的。在导体和绝缘体之间还存在大量半导体,其导电能力居中,并且随温度升高而增大,随温度下降而减小。 半导体分三种:本征半导体、p型半导体和n型半导体。 不含杂质的纯净半导体叫本征半导体,它的导电能力很差。为了提高纯质半导体的导电能力,常常在本征半导体中掺入少量杂质。如在硅中掺入硼,硅原子周围就形成可移动的空穴,这就是P型半导体;如果在硅中掺入磷, 材料中就会出现多余电子,这就是n型半导体。它们各有自己的特性,常常联合使用。人们为了获得所需要的半导体,就必须制得纯净的本征半导体。 目前,人们所获得硅的纯度已达14个9,即99。999999999999%。这是人类材料史上的一个奇迹。 半导体材料有许多奇妙用途,在各个领域发挥重要的作用,无论是收音机、电视机,还是大型计算机、工业电气化系统,都离不开半导体材料。 半导体材料是制造电子元件的主要材料,而我们用的收音机、电视机、电子游戏机以及工业用的电子计算机、机器人等,都是由无数的电子元件构成的。半导体材料制成的电子元件不仅功能强、效果好,而且重量轻、寿命长、耗电省。1946年,美国研制出世界上第一台电子计算机,使用了18000个真空电子管,1500个继电器,重量达30吨,占地面积170平方米,真是一个庞然大物。而现在运算速度比它快得多的微型计算机,还没有一张书桌大。 电子元件的发展已经历了四个时代,1947年美国的布拉坦和同事制成了晶体管,这是第一代。晶体管因性能优于电子管而被广泛使用。1962年,在一小块硅片上制成了几个元件组成一个小型电路,这就是小型集成电路。集成电路体积小而功能大,因而迅速发展起来。1965年发展到中规模集成电路,指甲大的一块硅片上可制作上百个元件。1968年出现了大规模集成电路,在5~7平方毫米的硅片上制成了上万个元件。1979年日本在6平方毫米的硅片上制成了15万个元件,这就是超大规模集成电路。目前人们正在研制三维集成电路。前几代集成电路都是平面式的,像一排排的平房。而三维集成电路则像高楼大厦,在一层元件上再重叠一层元件,这样,每个元件与周围元件的联络构成一个空间网络,便于信息的传递和处理。用这种三维集成电路也许可以模拟人脑的思维,如果是这样,那么我们就可以制造出会思考、会自行解决问题的机器人了。 半导体材料具有良好的光电转换效应,是制造光电电池的好材料。有了廉价高效的光电电池,我们才能充分利用清洁的太阳能。有些半导体材料的温差电动势很大,能直接把热能转换为电能。这种温差发电机适用于缺电的边远地区。在宇宙飞行器、导航设备上也用到它。 半导体材料还用于制造激光器。激光方向性好,能量集中,在现代各个行业都得到广泛应用。大功率的激光武器为各国所重视。用半导体制成的发光二极管,在光纤通讯方面有重要用途。光纤通讯比微波通讯效果更好,一条光缆可载上亿门电话。人们预计,光计算机将比电子计算机运算速度快几十倍。 半导体材料经过几十年的发展,已历经三代,最早人们用锗,但锗元件的寿命和效果都不大理想,人们转而重视开发硅,目前硅已成为应用最广泛的半导体材料。为了在高温、高频领域取得进展,人们又看重砷化镓。它是砷在高温下和镓结合生成的化合物,是高频、高温电子元件的理想材料,它必将在巨型计算机、高效机器人、激光、光纤通讯等方面发挥重要作用欢迎分享,转载请注明来源:内存溢出
评论列表(0条)