美国佛罗里达大学研究人员宣布,他们在新半导体的设计方面取得突破,从而率先为一种新型电子开关开发出重要的基础材料,这种基础材料很可能提供平稳的不间断的电力供应。这项研究成果可能成为21世纪汽车工业和尖端军事硬件使用的重要材料,行业杂志《化合物半导体》对这项研究成果作了介绍。
佛罗里达大学四位材料学教授和两位化学工程教授用氮化镓材料设计了一种称之为“金属氧化物半导体场效应晶体管”的基本电子结构。
佛罗里达大学的科学家和圣巴巴拉加州大学的科学家们还最先设计并展示了一种与之相关的“双极晶体管”。
参加研究的佛罗里达大学材料学教授斯蒂芬·皮尔顿说,这两项研究成果是朝着制造氮化镓半导体开关迈出的重要步骤。这种开关将确保供电系统今后能实现高质量的电力输送。
他说,美国供电系统目前使用大型机械中继开关和硅开关输送电力,但是这两种开关都存在严重的缺陷。用氮化镓开关替代上述两种开关输送电力可以收到良好的效果。
皮尔顿说:“如果能用电子开关替换全部机械中继开关和硅开关,输送电力的速度更快,问题也大大减少。”
一种全新的碳基材料——一氧化石墨烯(GMO)由美国威斯康辛大学米尔沃基分校的科学家在日前发现,据电磁流量计获悉,该半导体新材料由碳家族的神奇材料石墨烯合成,有助于碳取代硅,应用于电子设备中。该团队在研究一种混合纳米材料时,无心插柳得到了GMO。起初,他们的研究对象是一种由碳纳米管(将石墨烯卷成圆柱状得到)组成的、表面饰有氧化锡纳米粒子的混合纳米材料,陈俊鸿用这种混合材料制造出了高性能、高效率而廉价的传感器。为了更好地了解这种混合材料的性能,科学家们需要想方设法让石墨烯变身为其“堂兄弟”——能大规模廉价生产的绝缘体氧化石墨烯(GO)。GO由石墨烯不对齐地堆叠而组成。实验中,陈俊鸿和物理学教授马瑞加·加达得兹斯卡在真空中将GO加热以去掉氧。然而,GO层中的碳和氧原子没有被破坏而是变得排列整齐,变成了有序的、自然界并不存在的半导体GMO。该研究团队接下来需要了解什么触发了这种材料的重组以及什么环境会破坏GMO的形成。威斯康辛大学米尔沃基分校表面研究实验室的主任迈克尔·梅韦纳说:“还原反应会去除氧,但实际上,我们获得了更多氧,因此,我们需要了解的事情还有很多。”该研究团队的成员、力学工程教授陈俊鸿(音译)表示:“石墨烯研究领域的主要驱动力之一是使这种材料成为半导体,我们通过对石墨烯进行化学改性得到了新材料GMO。GMO展示出的特性表明,它比石墨烯更容易大规模生产。”因为GMO是单层形式,因此其或许可应用于与表面催化有关的产品中。他们正在探索其在锂离子电池阳极的用途,GMO有可能提升锂离子阳极的效能。研究人员埃里克·马特森说:“我们认为氧会离开,留下多层石墨烯,但结果却并非如此,让我们很吃惊。”据电磁流量计了解,石墨烯的导电、导热性能极强,远超硅和其他传统的半导体材料,而由硅制成的晶体管的大小正接近极限,科学家们认为,纳米尺度的碳材料可能是“救命稻草”,石墨烯未来有望取代硅成为电子元件材料。芯片发展到现在,将面临一次重大的半导体材料变革,很多人都知道目前我们的芯片材料主要是硅材料,这种材料虽然稳定是很好,成本也便宜,但是却受到材料的限制,发热和功耗高,性能遇到瓶颈都是硅芯片急需被替换的原因,而在新一代的芯片研发中,各国也是各显神通,比如我国的碳芯片和量子芯片等,在新一代芯片的研发中,我国已经达到了先进水平,相比其他国家而言,我国是少有的在芯片领域和美国并驾齐驱的国家。
华为创始人任正非曾在 接受雅虎 财经 专访中 说过,光芯片将是新一代芯片的未来,并且华为和英国的剑桥大学也有合作,并且今天上半年华为也成功的发布了自主研发的 全球首个800G模块的光芯片,当然这款芯片 主要应用于光纤通信的光电转换上面, 华为宣称: 该芯片的单纤容量可达到48T,对比业界方案高出40%,传输距离相比业界提升20%。
而就在8月底的Hot Chips 32大会上,麻省理工学院的初创公司Lightmatter发布了一块AI加速的光子计算测试芯片。根据Lightmatter提供的数据,该芯片由毫瓦级的激光光源供电,利用硅光子和MEMS技术的处理器速度比传统芯片快1000倍,但是功耗却只有普通电子器件的千分之一,并且预计将在2021年正式生产实现商用,而主要应用领域在未来的人工智能AI运算方面。
人工智能被称之为第四代工业革命,这款Lightmatter研发出来的光子芯片,采用的是两个层叠的芯片组,面积约为150mm2左右,内部拥有超过十亿FinFET晶体管,数万光子算术单元,将重新定义AI智能芯片领域的发展,据Lightmatter首席执行官介绍,在实际应用中,该芯片将击败全球领先的AI芯片领导者—英伟达GPU A100,并且在BERT和ResNet-50等推理工作上可提升20倍的效能,提高5倍以上的数据吞吐量。未来量产后,对AI智能领域的发展将会是颠覆式,AI智能领域也将迎来爆发式增长。
其实光芯片是一个统称,光芯片被应用在各个领域,目前通信上面的已经比较成熟。相比传统的硅材料为导体的电信号而言,光信号的传输要快的多,这个就相当于家里面的拨号宽带和光纤宽带一样,不光是带宽的提高,在速度和延迟上面也是质的飞越,而光芯片的主要工作方式是靠激光发生器触发的,可以同时实现多路运算,并且传输过程中的损耗很低,是未来替代传统芯片的有效解决方案。
在下一代新材料的芯片中,我国也一直在努力,在世界上也达到了领先水平,比如北大的碳基芯片和中科的量子芯片、华为研究的通信光芯片都刷新过世界纪录。但是即便如此,相关行业的公司和科研人员还是非常稀少,努力的培养新一代的科研人员,开设相关专业的课程是未来可持续发展的重要道路,毕竟随着硅基芯片慢慢走向极限,未来新材料的芯片研发是我国弯道超车的好机会。
随着我国2025年芯片自主率达到70%的计划,相关行业的企业可以获得10年免税的机会。各大集成电路的设计和制造厂商也站在风头上,彻底激发了国内半导体企业的发展。当然目前我国的只有15%,想要达到70%的自给率,其中的任务也是非常艰巨的,但是这也看得到来,我国在半导体芯片中的发展决心和毅力,未来新型半导体的开发也将提上日程。
其实在芯片的发展中,量子芯片才是未来超级计算机的模型,那么我国的量子芯片发展如何,量子计算机相比传统计算机优势在哪里,上西瓜视频,搜索“ 科技 思维”,看西瓜视频:实话实说,跟欧美相比中国量子 科技 研究到底处于什么水平?跟着西瓜视频创作人“ 科技 思维”一起 探索 我国量子计算的秘密,我国在量子计算领域和欧美的差距有多远,量子芯片能替代传统芯片吗。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)