A low-power LD
In the field of information technology for the rapid development of low-power LD. For example, for fiber-optic communications and optical switching systems distributed feedback (DFB) and the dynamic single-mode LD, narrow linewidth tunable DFB-LD, such as CD-ROM for information processing technology in the field of visible light Wavelength (such as wavelength of 670nm, 650nm, 630nm The blue-green to red) LD, surface-emitting quantum well, as well as ultra-short laser pulses substantive, which are all treated the development of LD. The development of these devices are: narrow-linewidth single-frequency, high-speed, as well as short-wavelength tunable optical and integrated single-chip, and so on.
B high-power LD
In 1983, a single wavelength of 800nm output power LD more than 100mW, to 1989, 0.1mm-wide LD be reached 3.7W continuous output, and 1cm linear array LD has reached 76W output, the conversion efficiency of 39%. In 1992, the Americans also targets to a new level: 1cm linear array LD CW output power up to 121W, the conversion efficiency of 45%. Now, the output power of 120W, 1500W, 3kW and many other high-power LD have been published. High-efficiency, high power LD array and its rapid development for all-solid-state laser, diode laser that is pumped (LDP) of the rapid development of solid-state laser provides strong.
In recent years, in order to adapt to the EDFA and the EDFL, and other needs of the wavelength of 980nm high-power LD is that there is great development. Fiber Bragg Grating with recently selected frequency for filtering, a significant improvement in the stability of its output, pump effectively improve the efficiency.
And the characteristics of the application: semiconductor diode laser is the most important practical for a class of lasers. Its small size, long life, and a simple injection of current-pumped his way to work with the voltage and current circuit-compatible, which can be integrated with a single. And also can be as high as GHz frequency modulation direct current for high-speed modulation of laser output. As a result of these advantages, the semiconductor diode laser in the laser communications, optical storage, optical gyros, laser printing, as well as radar range, and so on, as well as access to a wide range of applications.
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)