当电流通过各种物体时,不同的物体对电流的通过有着不同的阻止能力,有的物体可使电流顺利通过,也有的物体不让其通过,或者在一定的阻力下让它通过.这种不同的物体通过电流的能力,叫做这种物体的导电性能.各种物体均有着不同的导电性能,凡是导电性能很好的物体叫做导体.如银、铜、铝、铅、锡、铁、水银、碳和电解液等都是良好导体.反之,导电能力很差的物体叫做绝缘体.还有,有的物体的导电能力比导体差,但比绝缘体强,这种导体叫做半导体.如常用的晶体管原材料硅、锗等.收音机 CPU都是半导体
半导体具有一些特殊性质.如利用半导体的电阻率与温度的关系可制成自动控制用的热敏元件(热敏电阻);利用它的光敏特性可制成自动控制用的光敏元件,像光电池、光电管和光敏电阻等.
半导体还有一个最重要的性质,如果在纯净的半导体物质中适当地掺入微量杂质测其导电能力将会成百万倍地增加.利用这一特性可制造各种不同用途的半导体器件,如半导体二极管、三极管等.
半导体制冷器件的工作原理是基于帕尔帖原理,该效应是在1834年由J.A.C帕尔帖首先发现的,即利用当两种不同的导体A和B组成的电路且通有直流电时,在接头处除焦耳热以外还会释放出某种其它的热量,而另一个接头处则吸收热量,且帕尔帖效应所引起的这种现象是可逆的,改变电流方向时,放热和吸热的接头也随之改变,吸收和放出的热量与电流强度I[A]成正比,且与两种导体的性质及热端的温度有关,即:Qab=Iπabπab称做导体A和B之间的相对帕尔帖系数
,单位为[V],
πab为正值时,表示吸热,反之为放热,由于吸放热是可逆的,所以πab=-πab帕尔帖系数的大小取决于构成闭合回路的材料的性质和接点温度,其数值可以由赛贝克系数αab[V.K-1]和接头处的绝对温度T[K]得出πab=αabT与塞贝克效应相,帕尔帖系也具有加和性,即:Qac=Qab+Qbc=(πab+πbc)I因此绝对帕尔帖系数有πab=πa-
πb金属材料的帕尔帖效应比较微弱,而半导体材料则要强得多,因而得到实际应用的温差电制冷器件都是由半导体材料制成的。制冷材料AVIoffe和AFIoffe指出,在同族元素或同种类型的化合物质间,晶格热导率Kp随着平均原子量A的增长呈下降趋势。RWKeyes通过实验推断出,KpT近似于Tm3/2ρ2/3A-7/6成比例,即近似与原子量A成正比,因此通常应选取由重元素组成的化合物作为半导体制冷材料。半导体制冷材料的另一个巨大发展是1956年由AFIoffe等提出的固溶体理论,即利用同晶化合物形成类质同晶的固溶体。固溶体中掺入同晶化合物引入的等价置换原子产生的短程畸变,使得声子散射增加,从而降低了晶格导热率,而对载流子迁移率的影响却很小,因此使得优值系数增大。例如50%Bi2Te3-50%Bi2Se3固溶体与Bi2Te3相比较,其热导率降低33%,而迁移率仅稍有增加,因而优值系数将提高50%到一倍。Ag(1-x)Cu(x)Ti
Te、Bi-Sb合金和YBaCuO超导材料等曾经成为半导体制冷学者的研究对象,并通过实验证明可以成为较好的低温制冷材料。下面将分别介绍这几种热电性能较好的半导体制冷材料。二元固溶体,无论是P型还是N型,晶格热导率均比Bi2Te3有较大降低,但N型材料的优值系数却提高很小,这可能是因为在Bi2Te3中引入Bi2Se3时,随着Bi2Se3摩尔含量的不同呈现出两种不同的导电特性,势必会使两种特性都不会很强,通过合适的掺杂虽可以增强材料的导电特性,提高材料的优值系数,但归根结底还是应该在本题物质上有所突破。
就是手芯片生的量及散出去。要不然致芯片半导体散热器是由半导体所组成的一种散热装置,于1960年左右才出现,然而其理论基础可追溯到19世纪。
这现象最早是在1821年,由一位德国科学家ThomasSeeback首先发现,不过他当时做了错误的推论,并没有领悟到背后真正的科学原理。
半导体散热片本身是通过消耗电能来提高热量传输速度的东西。分冷面和热面,通过消耗电能来将冷面的热量传递到热面。热面的发热量比较大,所以要保障有一定的散热能力。热面温度越高,冷面的降温效率越低,最后有可能导致整个半导体散热片被熔毁。
一般有些散热器它是有一种半导体功能的,就是将散热器类装入水,然后它的水就会自动凝结成小冰珠附着在手机背面上,但是这种是不会给手机造成任何进水或者危害的。
因为他毕竟是小冰猪,而且他是散热器散发出来的,它已经极大的溶解掉了水中的有机成分,只留下一些水蒸气,而水蒸气的密度非常的低,非常容易被融化。
手机散热器风冷好。手机“散热设备”内含有制冷晶片,合金散热柱,机身搭载5叶扇。原理是通电后风扇启动,两侧风道引流加持,让整个机身实现空气循环,来降温内部的制冷晶片,通过贴在手机背部的方式去逐渐降温。但不足的是制冷晶片本身背后大量的发热需要通过背部风扇排出,排风口正好就对着我的双手,机身过宽不方便使用,齐能达到2摄氏度。也是非常不错的手机散热器。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)