1介绍:由于热电制冷器是固态为基础的构造,所以,一般认为热电制冷器具有很高的可靠性。在大多数应用条件下,热电制冷器件均可以为您提供长期无故障的服务。目前,在很多具体的实例中,热电制冷器的持续工作时间都超过了20年,并且热电制冷器的寿命比相关仪器的寿命都要长。然而,因为失效率与应用环境是密切相关的,实际中想要得到具体的热电制冷器件的可靠性仍然是比较困难的。对于一些相对稳定的制冷应用条件下,在制冷器上加载的直流电源非常稳定而且基本上不会间断,此时热电制冷器的可靠性会非常的高。平均故障间隔时间(MTBFs)一般会超过2000,000小时,一般以这种情况下的平均故障间隔时间作为工业标准。而另一方面,在涉及到冷热循环工作的应用条件下,平均故障间隔时间就会大大缩短,特别是当热电制冷器在循环过程中温度会升高到较高温度时。
一般来说,公布热电制冷器的可靠性数据是非常困难的,因为在实际应用中的很多应用条件和工作参数会影响到最终的结果。所以,可靠性数据只有对于与测试环境相似的应用环境来说是有效的,对其他应用情况来说并不一定适用。如制冷器安装和焊接工艺,供电电源和温度控制系统及相关技术,温度控制等因素,与外部环境相结合将会极大的影响失效率,使其发生大范围的波动。为了给用户提供有关热电制冷器寿命的基础数据,并且为相关工程人员在设计优化制冷器可靠性的过程中提供帮助,我们设计了若干制冷器的可靠性试验来获取所需的可靠性数据。这里列出了几种应用条件下的测试结果和数据,可以为在相似的条件下使用制冷器的最终消费者提供帮助。为用户提供这些数据时,要根据不同的应用环境和用户需求进行选择。
对热电制冷器安装过程的一些大体要求,可以在本手册的第六部分找到。为了尽量减少错误的安装过程会对制冷器可靠性带来影响,所有制冷器的安装过程必须遵守手册上提到的要求。在安装过程中影响制冷器可靠性的因素主要有以下几点:
a) 热电制冷器在压力条件下具有很高的机械强度,但是其剪切强度相对来说比较低。因此,一般不可以将热电制冷器设计在承载主要支撑的机械结构体系中。此外,在可能会涉及到振动和冲击的应用条件下,热电制冷器最好是在安装时保持适当的压力,也就是使用螺钉夹紧的方法。对于热点制冷器来说,只要使用适当的安装方法,就可以成功的应对如飞机,军事或相似环境下出现的振动或冲击环境。
b) 尽管热电制冷器的最大建议压力载荷是每平方厘米15千克 (每平方英寸200磅),但是在测试过程中,大多数制冷器都可以承受超过每平方厘米15千克(每平方英寸200磅)的压力载荷而不造成失效。最重要的是需要保证制冷器的安装方法是选用螺钉夹紧固定的方法,并且安装过程中保持了适当的压力,这样制冷器不会在很小的侧向力下就容易松动进而引起移动。如果在同一个制冷器中需要固定若干对温差电偶对的话,松动的部件将引起很大的麻烦。这种情况下,如果安装过程中,夹具的压力不够,就可能引起制冷性能的降低甚至制冷器的提前失效。如果使用多级制冷器阵列式安装,建议使用高度公差为±0.025 mm的制冷器。在任何情况下,必须保证夹具压力的均匀施加,并且要求表面必须平整(具体安装指导请参见第六部分)。
c) 为了避免受到明显的机械振动而引起的制冷器失效,尽量不要在制冷器的冷端面上放置没有支撑的大质量器件。如果需要涉及到质量很大的物体,最好使用夹具将热电制冷器紧固在散热器和物体之间,或者先将器件装夹在一个可作为介质的冷板上。此时,夹紧螺钉可以有效的增加整个机械系统的剪切强度。
d) 为了避免制冷性能的降低以及对制冷材料可能引起的电化学腐蚀,热电制冷器需要隔绝潮气。当温度降低到露点以下时,为了避免水汽渗入制冷器内部,应该安装有效的防潮密封保护。这层防潮保护层应该围绕着热电制冷器安装在散热片和被冷却物体之间。电子级RTV硅胶可以直接用作热电制冷器的防潮保护层。使用可变形的闭孔泡沫绝缘胶带或薄片材料,适当的结合RTV来填充空隙,就可以用来在被冷却物体和散热器之间形成保护层。
e) 如果器件的工作条件中需要涉及冷热循环或者很大的温度变化,此时制冷器的安装方法不可以使用焊接或树脂胶粘结的方法,因为这两种方法都需要在制冷器上进行刚性连接。一般情况下,刚性连接会导致大量的热应力,从而引起制冷器的提前失效,除非所有元件的热膨胀系数都非常接近。由于制冷器热端面上的温度一般比较恒定,在制冷器热端面上的刚性连接一般影响比较小。如果工作条件中需要涉及明显的温度变化或者冷热循环,我们强烈建议使用如导热硅脂,石墨片等安装材料,或者金属铟的螺钉夹紧方式对制冷器进行安装。此外,如果在制冷器两端都进行了刚性连接,这种制冷器尽量不要使用在大于15 mm2的器件上。
另外,温度控制方法同样也会影响热电制冷器的可靠性。如果想要延长制冷器寿命,一般建议选择线性或等比例的温度控制方法,而不是ON/OFF开关方法。
2 高温下制冷器的可靠性
热电制冷器的失效一般分为两种:早期失效和性能衰减。性能衰减一般是在长期使用之后由于半导体材料性能参数的变化或者接触电阻的增加所引起的。长期在高温下使用会引起半导体材料性能参数的变化从而降低制冷器的制冷性能。为了研究这个效应对性能的影响,我们做了一个测试。使用一冷科技的95-系列热电制冷器,在空气中持续的高温(150 ℃)环境下工作。在测试过程中,定时测量和记录材料的相关性能参数。在测试中,使用最大温差(DTmax)来表示制冷器整体制冷性能。在42个月的时间内,我们跟踪记录这个参数,将平均值列在图10.1中。我们可以发现,在高温条件下暴露12个月后,最大温差有少许(2.5%)降低。而在接下去的30个月中,由于半导体材料趋于稳定,最大温差只继续降低了1.3%。
图10.1
3 冷热循环过程中的制冷器可靠性
将热电制冷器在很宽的温度范围内进行持续的冷热循环,可以看成是对制冷器进行可靠性测试,特别是在循环过程中将制冷器的热端温度升高到很高的温度。与绝大多数应用条件相比,这种运行方式都会引起更高的失效率。大部分热循环失效的根源是制冷器中热电材料与其它部件的热膨胀系数的不匹配,这是完全不可避免的。这种失效一般表现为早期失效,而有时也会在失效之前观察到性能衰减。
为了研究冷热循环对制冷器性能的影响,首先,我们需要定义冷热循环。在许多热电器件的工作环境中都需要涉及到周期性的升高和降低温度,而有时这种循环会在很宽的温度范围内进行。尽管循环和非循环的工作条件之间的界限不是很明确,但是一般情况下我们将这种在很长一段时间内,温度有规律并且持续性的升高和降低的工作条件称为冷热循环。这种循环的工作条件一般趋向于自动化或者机械控制温度而不是人工控制。如果器件的温度每天只升高和降低几个循环,我们一般不会将这个作为循环工作条件来进行讨论。如果您对具体需要的工作条件的状态不是非常确定,请及时咨询我们的服务人员。
在冷热循环过程中的失效率至少与四个因素相关:(1)总的循环次数;(2)循环过程中总的温度变化范围;(3)循环过程中的温度上限;(4)温度变化的速率。当循环次数很少,温度变化范围很窄,温度上限相对较低并且温度变化很慢时,可以获得最高的可靠性和较长的制冷器寿命。(相反,在很宽的温度范围内,温度变化速率很高时,进行大量的循环,并且循环过程中温度最大值较高时,将会大大缩短制冷器的寿命)。需要注意的是,制冷器的绝对寿命大大依赖于总的循环次数,而不是进行这些循环所需要的总时间。所以,当讨论热循环时,平均故障间隔时间的单位使用循环次数表示而不是小时;我们将使用平均故障间隔时间来进行下面的讨论。
在冷热循环中使用的制冷器型号也会很大程度的影响失效率。最大使用温度较高的制冷器相对于最大使用温度较低的制冷器来说,具有更长的使用寿命。这个规律即使对于冷热循环中的最高温度远远小于制冷器的最大使用温度时也是适用的。在一个涉及到双级热电制冷器的应用中,制冷器在-55 ℃到125 ℃之间循环,一个最大使用温度为150 ℃的制冷器的平均故障间隔时间为8100次循环,而最大使用温度为200 ℃的制冷器的平均故障间隔时间为17500次循环。最大使用温度更低的制冷器只能使用在更低温度的热循环应用中。总之,我们建议在超过90 ℃的热循环应用中使用TECooler HT系列(最大使用温度为200 ℃)制冷器。
在超过90 ℃的热循环应用中使用TECooler HT系列(最大使用温度为200 ℃)制冷器。
这里需要指出,还有另外两个因素同样也会影响热循环时的平均故障间隔时间。体积较小的制冷器拥有较少的热电偶对,所以与体积较大的制冷器相比,其使用寿命较长。而在体积较大的制冷器中,热-机械应力更大,而且这种制冷器一般有比较多的热电偶对,这将增加焊接点在热应力下失效的可能。大量的数据表明在冷热循环过程中,尺寸小于或等于30 mm2的制冷器与体积较大制冷器相比,具有更高的可靠性。
为了更好的定义在高温冷热循环条件下的制冷器失效率,我们使用TECooler HT系列制冷器长期进行了一个测试, 制冷器在30 ℃到100 ℃之间循环。制冷器被安装在一个强制对流式散热器上,并且包覆了一层绝缘铝板。通过交替改变加载直流电源的两极来使器件制冷和加热。通过测量盖板上的温度来测量循环极限。每次循环时间是5分钟 (2.5分钟从30 ℃到100 ℃,2.5分钟从100 ℃到30 ℃),所以一天288次循环,一个星期2016次循环。每星期测量一次制冷器的性能参数,突然的电阻增加表示失效。
与预期相同,制冷器的电阻首先缓慢增加,直到某一点上电阻忽然快速增加,表示发生了失效。如图10.2所示,所有的制冷器在失效前至少进行了25000次循环,然后继续测试直到50%的制冷器失效。计算出这组制冷器的平均故障间隔时间是68000次循环。这里我们仍然需要注意,制冷器的安装方法和安装过程中的所有细节,对于制冷器在冷热循环在工作条件下的应用来说都非常重要。另外,5 ℃到95 ℃之间热循环的测试显示其平均故障间隔时间是100,000次循环。
图10.2
在结束这个章节之前,我们需要提到热循环过程的一个实际应用。由于在工作过程中,热电制冷器内部会产生热-机械应力,此时,冷热循环可以被看成是一个有效的筛选技术。通过将热电制冷器置于一个精确控制的循环过程中,可以筛选出具有潜在缺陷的制冷器,从而降低早期失效的可能性。当然,这种 *** 作可能会增加成本,但是在需要高可靠性的情况下还是非常有必要的。
4ON/OFF开关循环试验
前面提到工业上接受的标准热电制冷器的平均故障间隔时间是至少200,000小时。这个平均故障间隔时间是以相对稳态的制冷器运行条件为基础的,在工作时,系统电源只是偶尔打开或切断(每天几次)。而在另一些应用条件下,电源会被频繁的开关,特别是在恒温温度控制器的应用中。我们使用TECooler HT系列制冷器进行了一次测试,来研究相对恒定的温度下ON/OFF开关式电循环对制冷器的影响。使用导热硅脂将制冷器安装在一对强制对流式散热器之间。电流加载时间为7.5秒,断开时间为7.5秒,所以一个电循环的时间是15秒。循环过程中,监控每一个制冷器上的输入电流,由于制冷器电阻增加而引起的电流降低是制冷器失效的标志。测试进行大约25000个小时,至少6百万次循环。在这种条件下计算出来的平均故障间隔时间是125,000小时,或者说3*107次ON/OFF开关循环。
注意:大多数传统的恒温器本身具有更大的开关温度差,这样会建立一个明显的冷热循环,其中热电制冷器上的温度会在较高和较低的温度极限之间变化。由于我们已经知道,冷热循环会降低热电制冷器的使用寿命,所以在要求高可靠性的应用条件下,不推荐使用传统的ON/OFF开关式恒温温度控制系统。
5 环境测试
热电制冷器经常被安装在有振动、冲击或另一些潜在的不利环境中。在前文曾经提到,制冷器可以承受适当的压力但是其剪切强度相对较弱。当热电制冷器被适当的安装在一个机械部件中时,它们可以承受适当的机械应力而不产生失效。
一冷科技提供的制冷器已经成功的应对了大量的环境/机械测试条件,而没有发生失效。具体的测试条件包括:
高温运行和存储:150°C下30,000多个小时
低温运行和存储:-40°C 下1000多个小时
热循环:
(a) 100 ℃(15 sec)/ 100 ℃(15 sec), 10个循环
(b) 150 ℃(5 min)/ -65 ℃(5 min), 10个循环(c) MIL-STD-(c) MIL-STD-202,方法107
TECooler HT系列制冷器:-55 ℃到+85 ℃
机械冲击: (a) 100 G, 200 G, 26 msec500 G 1000 G @ 1 sec ,3个方向,每个方向上3次冲击
(b) MIL-STD-202,方法213,测试条件I
振动: (a) 10/55/10 Hz,1分钟循环,9.1 G, 3个方向,每个方向上2小时204A,测试条
件 B, 最大15 G
6 质量控制流程
每个热电制冷器件制造商都具有完备的质量控制和测试流程,以确保产品符合公布的规范,并且能代表标准的工艺。尽管工业上并没有太多正规的标准,但是许多主要的热电制冷器件制造商还是会使用某些特定的标准。然而,如果用户对产品上可能影响应用的质量相关问题有任何疑问,请及时与相应的热电制冷器件制造商进行咨询。
一冷科技的测试和质量流程经过多年的使用,具有丰富的工业生产经验,覆盖了热电制冷器工作中将遇到的很宽的应用条件。整个流程包括几个主要方面,如产品运输前100%的电学和机械性能测试/检查;在使用过程中100%检查。
7结论
在前面的讨论中,我们强调了热电制冷器的可靠性与应用条件之间的依赖性。通过遵循一些基本规则,并且了解一些特定的因素是如何影响制冷器的使用寿命,设计者有可能延长系统的使用寿命。尽管一些设计者可能期望进行一个复杂的分析,建立起所有相关参数的模型,但是许多用户更倾向于在遇到一些特殊要求或非传统布局时,可能会寻求一些经验主义的方法来计算他们特定应用条件下的制冷器可靠性。
按感光器件类别来分,现在市场上摄像头使用的镜头大多为CCD和CMOS两种,其中CCD(Charge Coupled Device,电荷耦合组件)因为价格较高更多是应用在摄像、图象扫描方面的高端技术组件,CMOS(Complementary Metal-Oxide Semiconductor,附加金属氧化物半导体组件)则大多应用在一些低端视频产品中。
市场销售的数码摄像头中,基本是采用的CMOS的摄像头。在采用CMOS为感光元器件的产品中,通过采用影像光源自动增益补强技术,自动亮度、白平衡控制技术,色饱和度、对比度、边缘增强以及伽马矫正等先进的影像控制技术,完全可以达到与CCD摄像头相媲美的效果。受市场情况及市场发展等情况的限制,摄像头采用CCD图像传感器的厂商为数不多,主要原因是采用CCD图像传感器成本高的影响。
扩展资料
图像传感器图像传感器是利用光电器件的光电转换功能。将感光面上的光像转换为与光像成相应比例关系电信号。与光敏二极管,光敏三极管等“点”光源的光敏元件相比,图像传感器是将其受光面上的光像,分成许多小单元,将其转换成可用的电信号的一种功能器件。图像传感器分为光导摄像管和固态图像传感器。与光导摄像管相比,固态图像传感器具有体积小、重量轻、集成度高、分辨率高、功耗低、寿命长、价格低等特点。因此在各个行业得到了广泛应用。
CCD
CCD是应用在摄影摄像方面的高端技术元件,CMOS则应用于较低影像品质的产品中,它的优点是制造成本较CCD更低,功耗也低得多,这也是市场很多采用USB接口的产品无须外接电源且价格便宜的原因。尽管在技术上有较大的不同,但CCD和CMOS两者性能差距不是很大,只是CMOS摄像头对光源的要求要高一些,但该问题已经基本得到解决。CCD元件的尺寸多为1/3英寸或者1/4英寸,在相同的分辨率下,宜选择元件尺寸较大的为好。图像传感器又叫感光元件。
应用
图像传感器 ,或称感光元件,是一种将光学图像转换成电子信号的设备,它被广泛地应用在数码相机和其他电子光学设备中。早期的图像传感器采用模拟信号,如摄像管(video camera tube)。随着数码技术、半导体制造技术以及网络的迅速发展,市场和业界都面临着跨越各平台的视讯、影音、通讯大整合时代的到来,勾划着未来人类的日常生活的美景。
以其在日常生活中的应用,无疑要属数码相机产品,其发展速度可以用日新月异来形容。短短的几年,数码相机就由几十万像素,发展到400、500万像素甚至更高。不仅在发达的欧美国家,数码相机已经占有很大的市场,就是在发展中的中国,数码相机的市场也在以惊人的速度在增长,因此,其关键零部件——图像传感器产品就成为当前以及未来业界关注的对象,吸引着众多厂商投入。
以产品类别区分,图像传感器产品主要分为CCD、CMOS以及CIS传感器三种。本文将主要简介CCD以及CMOS传感器的技术和产业发展现状。
历史
感光器件是工业摄像机最为核心的部件,图像传感器有CMOS和CCD两种。CCD特有的工艺,具有低照度效果好、信噪比高、通透感强、色彩还原能力佳等优点,在交通、医疗等高端领域中广泛应用。由于其成像方面的优势,在很长时间内还会延续采用,但同时由于其成本高、功耗大也制约了其市场发展的空间。
CCD与CMOS在不同的应用场景下各有优势,但随着CMOS工艺和技术的不断提升,以及高端CMOS价格的不断下降,相信在安防行业高清摄像机未来的发展中,CMOS将占据越来越重要的地位。
CCD(Charged Coupled Device)于1969年在贝尔试验室研制成功,之后由日商等公司开始量产,其发展历程已经将近30多。CCD又可分为线型(Linear)与面型(Area)两种,其中线型应用于影像扫瞄器及传真机上,而面型主要应用于数码相机(DSC)、摄录影机、监视摄影机等多项影像输入产品上。
特点
一般认为,CCD传感器有以下优点:
高解析度
(High Resolution):像点的大小为μm级,可感测及识别精细物体,提高影像品质。从1寸、1/2寸、2/3寸、1/4寸到推出的1/9寸,像素数目从10多万增加到400~500万像素;
低杂讯
(Low Noise)高敏感度:CCD具有很低的读出杂讯和暗电流杂讯,因此提高了信噪比(SNR),同时又具高敏感度,很低光度的入射光也能侦测到,其讯号不会被掩盖,使CCD的应用较不受天候拘束;
动态范围广
(High Dynamic Range):同时侦测及分辨强光和弱光,提高系统环境的使用范围,不因亮度差异大而造成信号反差现象。
良好的线性特性曲线
(Linearity):入射光源强度和输出讯号大小成良好的正比关系,物体资讯不致损失,降低信号补偿处理成本;
高光子转换效率(High Quantum Efficiency ):很微弱的入射光照射都能被记录下来,若配合影像增强管及投光器,即使在暗夜远处的景物仍然还可以侦测得到;
大面积感光
(Large Field of View):利用半导体技术已可制造大面积的CCD晶片,与传统底片尺寸相当的35mm的CCD已经开始应用在数码相机中,成为取代专业有利光学相机的关键元件;
光谱响应广(Broad Spectral Response):能检测很宽波长范围的光,增加系统使用d性,扩大系统应用领域;
低影像失真
(Low Image Distortion):使用CCD感测器,其影像处理不会有失真的情形,使原物体资讯忠实地反应出来;
体积小、重量轻
CCD具备体积小且重量轻的特性,因此,可容易地装置在人造卫星及各式导航系统上;
低_电力
不受强电磁场影响;
电荷传输效率佳:该效率系数影响信噪比、解像率,若电荷传输效率不佳,影像将变较模糊;
可大批量生产,品质稳定,坚固,不易老化,使用方便及保养容易。
根据In-Stat在2001时对全球图像传感器的研究报告中指出,CCD产业前七大厂商皆为日系厂商,占了全球98.5%的市场份额,在技术发展方面,较有特色的主要厂商应为索尼、飞利普和柯达公司。
CMOS
特点
CMOS传感器采用一般半导体电路最常用的CMOS工艺,具有集成度高、功耗小、速度快、成本低等特点,最近几年在宽动态、低照度方面发展迅速。CMOS即互补性金属氧化物半导体,主要是利用硅和锗两种元素所做成的半导体,通过CMOS上带负电和带正电的晶体管来实现基本的功能。这两个互补效应所产生的电流即可被处理芯片记录和解读成影像。
在模拟摄像机以及标清网络摄像机中,CCD的使用最为广泛,长期以来都在市场上占有主导地位。CCD的特点是灵敏度高,但响应速度较低,不适用于高清监控摄像机采用的高分辨率逐行扫描方式,因此进入高清监控时代以后,CMOS逐渐被人们所认识,高清监控摄像机普遍采用CMOS感光器件。
CMOS针对CCD最主要的优势就是非常省电。不像由二级管组成的CCD,CMOS电路几乎没有静态电量消耗。这就使得CMOS的耗电量只有普通CCD的1/3左右,CMOS重要问题是在处理快速变换的影像时,由于电流变换过于频繁而过热,暗电流抑制的好就问题不大,如果抑制的不好就十分容易出现噪点。
已经研发出720P与1080P专用的背照式CMOS器件,其灵敏度性能已经与CCD接近。与表面照射型CMOS传感器相比,背照式CMOS在灵敏度(S/N)上具有很大优势,显著提高低光照条件下的拍摄效果,因此在低照度环境下拍摄,能够大幅降低噪点。
虽然以CMOS技术为基础的百万像素摄像机产品在低照度环境和信噪处理方面存在不足,但这并不会根本上影响它的应用前景。而且相关国际大企业正在加大力度解决这两个问题,相信在不久的将来,CMOS的效果会越来越接近CCD的效果,并且CMOS设备的价格会低于CCD设备。
安防行业使用CMOS多于CCD已经成为不争的事实,尽管相同尺寸的CCD传感器分辨率优于CMOS传感器,但如果不考虑尺寸限制,CMOS在量率上的优势可以有效克服大尺寸感光原件制造的困难,这样CMOS在更高分辨率下将更有优势。另外,CMOS响应速度比CCD快,因此更适合高清监控的大数据量特点。
历史
与CCD相比,CMOS具有体积小,耗电量不到CCD的1/10,售价也比CCD便宜1/3的优点。
与CCD产品相比,CMOS是标准工艺制程,可利用现有的半导体设备,不需额外的投资设备,且品质可随著半导体技术的提升而进步。同时,全球晶圆厂的CMOS生产线较多,日后量产时也有利于成本的降低。另外,CMOS传感器的最大优势,是它具有高度系统整合的条件。
理论上,所有图像传感器所需的功能,例如垂直位移、水平位移暂存器、时序控制、CDS、ADC?等,都可放在集成在一颗晶片上,甚至于所有的晶片包括后端晶片(Back-end Chip)、快闪记忆体(Flash RAM)等也可整合成单晶片(SYSTEM-ON-CHIP),以达到降低整机生产成本的目的。
正因为此,投入研发、生产的厂商较多,美国有30多家,欧洲7家,日本约8家,韩国1家,台湾有8家。而居全球翘楚地位的厂商是Agilent(HP),其市场占有率51%、ST(VLSI Vision)占16%、Omni Vision占13%、现代占8%、Photobit约占5%,这五家合计市占率达93%。
根据In-Stat统计资料显示,CMOS传感器的全球销售额到2004年可望突破18亿美元,CMOS将以62%的年复合成长率快速成长,逐步侵占CCD器件的应用领域。特别是在2013年快速发展的手机应用领域中,以CMOS图像传感器为主的摄相模块将占领其80%以上的应用市场。
市场
CMOS图像传感器属于新兴产品市场,其市场占有率变化不如成熟产业那般恒常不变,例如在1999年时,CMOS市场中,按照出货比例排名依序为Agilent、OmniVision、STM和Hyundai,其市场占有率分别为24%、22%、14%和14%,其中STM是欧洲厂商,Hyundai是韩国厂商;但只经过一年后的市场竞争,Agilent和OmniVision出货排名顺序仍然分居一、二,且市场占有率分别提升到37.7%和30.8%,而STM落居第四,市场占有率大幅滑落至4.8%。
至于Hyundai更是大幅衰退只剩2.1%的市场占有率,值得一提的是Photobi在2000年度的大幅成长,全球市场占有率快速成长至13.7%,排名全球第三。这三家厂商出货量就占全球出货量的82.2%。从中可以分析,这个产业的厂商集中度相当密集,所以观察上述三家厂商的动态和发展,可看出许产业和技术未来发展方向。
Agilent主要的产品为第二代的CIF(352*288)HDCS-1020和第二代的VGA(640*480)HDCS-2020,主要应用在数码相机 、行动电话、PDA、PC Camera等新兴的资讯家电产品之中,此外Agilent在2000年另一成功策略是和Logitech与Microsoft这两家公司策略联盟,打入了光学鼠标产品领域,但是这是非常低阶的CMOS产品,而且不是为了捕捉影像 。
所以在做影像感测器的全球统计时并未将此数量一并加入,但是此举可看出Agilent以CMOS技术为基础进军光学元件的规划意图。
OmniVision它主要的产品包括_CIF(352 x 288)、VGA(640 x 480)、SVGA(800 x 600)和SXGA(1280 x 1024)。Omnivision开发的130万像素等级的CMOS图像传感器正在被业界大量应用在数码相机中。业界一般认为,百万像素为使用CMOS和CCD的分水岭,CMOS成功跨进这一市场,足以说明CMOS技术发展对市场的渗透度,未来可能将取代CCD成为中低档影像产品的不留应用。
Omnivision在2001年5月开发的CIF(352 x 288)等级的CMOS传感器,其特色为低_电,目标市场定位在移动电话上,其产品发展策略和各大研究调查机构不谋而合,在移动电话市场上,CMOS模组的摄相模块已经成为移动通讯应用的最大量产品。
Photobit在2000年获得较大成功。2001年Photobit率先研发出PB-0330产品型号的CMOS图像传感器,此产品特色具备单一晶片逻辑转数位的变频器,它是第二代1/4寸的VGA(640 x 480),同时也推出PB-0111产品型号的CMOS影像感测器,是第二代1/5寸的CIF(352 x 288)。
Photobit推出这两种产品主要针对数码相机和PC Camera的数位化产品,和OmniVision CIF(352 x 288)定位在行动电话市场上有所区隔,其推出CIF(352 x 288)和VGA(640 x 480)这两种不同解析程度的影像感测器,行销范围意图含盖低阶和中高阶市场。
发展
2013年业界发展了CMOS图像传感器新技术--C3D。C3D技术的最大特点就是像素反应的均一性。C3D技术重新定义了成像器的性能(即把系统的整体性能包括在内)并提高了CMOS图像传感器在均一性和暗电流方面的标准性能。
2014年初,美国Foveon公司公开展示了其最新发展的Foveon X3技术,立即引起业界的高度关注。Foveon X3是全球第一款可以在一个像素上捕捉全部色彩的图像传感器阵列。传统的光电耦合器件只能感应光线强度,不能感应色彩信息,需要通过滤色镜来感应色彩信息,我们称之为Bayer滤镜。而Foveon X3在一个像素上通过不同的深度来感应色彩,最表面一层感应蓝色、第二层可以感应绿色,第三层感应红色。
它是根据硅对不同波长光线的吸收效应来达到一个像素感应全部色彩信息,已经有了使用这种技术的CMOS图像传感器,其应用产品是“Sigma SD9”数码相机。
这项革新技术可以提供更加锐利的图像,更好的色彩,比起以前的图像传感器,X3是第一款通过内置硅光电传感器来检测色彩的。Foveon X3的技术对于传统半导体感光技术来说有很大的突破,也有颠覆传统技术的效果,相信Foveon X3会有很好的前景。
在高分辨率像素产品方面,日前台湾锐视科技已领先业界批量推出了210万像素的CMOS图像传感器,而且已有美商与台湾的光学镜头厂合作,将在第三季推出此款CMOS传感器结合镜头的模组,CMOS应用已经开始在200万像素数码相机产品中应用。
对比
CCD提供很好的图像质量、抗噪能力和相机设计时的灵活性。尽管由于增加了外部电路使得系统的尺寸变大,复杂性提高,但在电路设计时可更加灵活,可以尽可能的提升CCD相机的某些特别关注的性能。CCD更适合于对相机性能要求非常高而对成本控制不太严格的应用领域,如天文,高清晰度的医疗X光影像、和其他需要长时间曝光,对图像噪声要求严格的科学应用。
CMOS是能应用当代大规模半导体集成电路生产工艺来生产的图像传感器,具有成品率高、集成度高、功耗小、价格低等特点。CMOS技术是世界上许多图像传感器半导体研发企业试图用来替代CCD的技术。经过多年的努力,作为图像传感器,CMOS已经克服早期的许多缺点,发展到了在图像品质方面可以与CCD技术较量的水平。
CMOS的水平使它们更适合应用于要求空间小、体积小、功耗低而对图像噪声和质量要求不是特别高的场合。如大部分有辅助光照明的工业检测应用、安防保安应用、和大多数消费型商业数码相机应用。
技术参数
了解CCD和CMOS芯片的成像原理和主要参数对于产品的选型时非常重要的。同样,相同的芯片经过不同的设计制造出的相机性能也可能有所差别。
CCD和CMOS的主要参数有以下几个:
1、像元尺寸
像元尺寸指芯片像元阵列上每个像元的实际物理尺寸,通常的尺寸包括14um,10um, 9um , 7um , 6.45um ,3.75um 等。像元尺寸从某种程度上反映了芯片的对光的响应能力,像元尺寸越大,能够接收到的光子数量越多,在同样的光照条件和曝光时间内产生的电荷数量越多。对于弱光成像而言,像元尺寸是芯片灵敏度的一种表征。
2、 灵敏度
灵敏度是芯片的重要参数之一,它具有两种物理意义。一种指光器件的光电转换能力,与响应率的意义相同。即芯片的灵敏度指在一定光谱范围内,单位曝光量的输出信号电压(电流),单位可以为纳安/勒克斯nA/Lux、伏/瓦(V/W)、伏/勒克斯(V/Lux)、伏/流明(V/lm)。另一种是指器件所能传感的对地辐射功率(或照度),与探测率的意义相同,。单位可用瓦(W)或勒克斯(Lux)表示。
3、坏点数
由于受到制造工艺的限制,对于有几百万像素点的传感器而言,所有的像元都是好的情况几乎不太可能,坏点数是指芯片中坏点(不能有效成像的像元或相应不一致性大于参数允许范围的像元)的数量,坏点数是衡量芯片质量的重要参数。
4、光谱响应
光谱响应是指芯片对于不同光波长光线的响应能力,通常用光谱响应曲线给出。
从产品的技术发展趋势看,无论是CCD还是CMOS,其体积小型化及高像素化仍是业界积极研发的目标。因为像素尺寸小则图像产品的分辨率越高、清晰度越好、体积越小,其应用面更广泛。
从上述二种图像传感器解析度来看,未来将有几年时间,以130万像素至200万像素为界,之上的应用领域中,将仍以CCD主流,之下的产品中,将开始以CMOS传感器为主流。业界分析2014年底至2015初,将有300万像素的CMOS上市,预测CMOS市场应用超越CCD的时机一般在2004年-2005年。
发展现状
图像传感器的视讯比现在是给定的,使用高清(HD)分辨率1080p,摄像机设计正朝使用更小的光学格式发展,导致需要更小的像素结构,以降低整体系统成本,同时不影响图像性能或光灵敏度。
CCD图像传感器由于灵敏度高、噪声低,逐步成为图像传感器的主流。但由于工艺上的原因,敏感元件和信号处理电路不能集成在同一芯片上,造成由CCD图像 传感器组装的摄像机体积大、功耗大。
CMOS图像传感器以其体积小、功耗低在图像传感器市场上独树一帜。但最初市场上的CMOS图像传感器,一直没有摆脱 光照灵敏度低和图像分辨率低的缺点,图像质量还无法与CCD图像传感器相比。
如果把CMOS图像传感器的光照灵敏度再提高5倍~10 倍,把噪声进一步降低,CMOS图像传感器的图像质量就可以达到或略微超过CCD图像传感器的水平,同时能保持体积小、重量轻、功耗低、集成度高、价位低 等优点,如此,CMOS图像传感器就会取代CCD图像传感器,并且发展出更好的功效。
由于CMOS图像传感器的应用,新一代图像系统的开发研制得到了 极大的发展,并且随着经济规模的形成,其生产成本也得到降低。现在,CMOS图像传感器的画面质量也能与CCD图像传感器相媲美,这主要归功于图像传感器 芯片设计的改进,以及亚微米和深亚微米级设计增加了像素内部的新功能。
实际上,更确切地说,CMOS图像传感器应当是一个图像系统。一 个典型的CMOS图像传感器通常包含:一个图像传感器核心(是将离散信号电平多路传输到一个单一的输出,这与CCD图像传感器很相似),所有的时序逻辑、 单一时钟及芯片内的可编程功能,比如增益调节、积分时间、窗口和模数转换器。
事实上,当一位设计者购买了CMOS图像传感器后,他得到的是一个包括图像阵 列逻辑寄存器、存储器、定时脉冲发生器和转换器在内的全部系统。与传统的CCD 图像系统相比,把整个图像系统集成在一块芯片上不仅降低了功耗,而且具有重量较轻,占用空间减少以及总体价格更低的优点。
参考资料来源:百度百科-图像传感器
芯片的发展历史(一)
第一,本人不是从事芯片产业工作的,只是理工科毕业,知道一些,但是对于芯片及技术方面的,大部分是不懂的。
第二,文中会提到很多上市公司,只是作为一个分析,不做买卖参考。如果有人要去 *** 作,一定自己研究一下基本面,我尽量保证引用的资料正确,但是买卖 *** 作还是要自己负责。
近期在研究半导体产业链,所以想写一些文章,尤其是希望能够分享自己研究的心得,希望大家能够多多支持。
本文主要是讲讲芯片技术的发展。
半导体产业中,集成电路(IC)占比超过80%,所以集成电路基本上等同于半导体产业。所以经常说到的芯片,集成电路,IC,半导体产业都是同一个意思,都是是指将一定数量的元器件及其连线,通过半导体工艺集成在一起的具有特定功能的电路,可细分为逻辑电路、存储器、微处理器、模拟电路。
半导体技术从19世纪开始诞生,发展至今扮演着越来越重要的角色,我们日常所熟知的手机(移动终端)、宽带(网络通信)、摄像头(安防监控)等都跟IC有关,就连美国硅谷的诞生也跟IC有关。
1、半导体技术发展的基础
半导体导电能力随着温度、光照条件、输入电压(电流)和掺入杂质的不同而发生很大变化,这四大特性的发现顺序分别如下:
1833年:法拉第发现硫化银材料的电阻是随着温度的上升而降低。这是半导体现象的首次发现;
1839年:法国贝克莱尔发现半导体和电解质接触形成的结,在光照下会产生一个电压,这就是半导体的第二个特性:光生伏特效应;
1873年:英国的史密斯发现硒晶体材料在光照下电导增加的光电导效应,这是半导体的第三种特性;
1874年:德国布劳恩观察到某些硫化物的导电有方向性,也就是半导体的整流效应,也是半导体所特有的第四种特性。
半导体的这四个特性,虽在1880年以前就先后被发现了,但半导体这个名词大概到1911年才被考尼白格和维斯首次使用。
直到1947年12月,人类 历史 上的第一个半导体点接触式晶体管才诞生于美国贝尔实验室,从此开创了人类的硅文明时代。
半导体的这四个特性,虽在1880年以前就先后被发现了,但半导体这个名词大概到1911年才被考尼白格和维斯首次使用。
直到1947年12月,人类 历史 上的第一个半导体点接触式晶体管才诞生于美国贝尔实验室,从此开创了人类的硅文明时代。
2、半导体技术发展历程
常见的半导体材料有硅、锗、砷化镓等。世界上最早的电子产品是由电子真空管组成的,具有体积大、易碎、密封性差等一系列 缺点,以硅晶圆材料为衬底制作的晶体管具有固态、体积小、质量轻、耗电低且寿命长的优点,被人们发现成为替代真空管的最佳材料,得到广泛应用。
从晶体管到集成电路再到高度集成。晶体管的出现开启了半导体工业的 篇章,接着将分立器件集成化、缩小结构尺寸、提升数量、降低功耗, 成为技术发展的迫切需求,集成电路应运而生。所谓集成电路,是指在 单个半导体晶片上,将晶体管、电阻、电容及连接线等有机结合的电路 结构,其本质上是晶体管制造工艺的延续。集成电路、分立器件、被动 元件以及各类模组器件通过 PCB 板连接,又构成了智能手机、PC 等各 类电子产品的核心部件。集成电路的出现,在一定程度上预示着半导体 工业走向规模产业化和技术上的成熟,也预示着半导体技术向微电子技 术方向上的演变。随着工艺水平和封装技术的提升,集成电路又逐步由 小规模(SSI)、中规模(MSI),逐步发展至大规模(LSI)、特大规模 (VLSI)乃至巨大规模(GSI)。当前,半导体产业经过半个多世纪的发 展,不仅带来了世界经济与技术的飞速发展,也带来了整个 社会 的深刻 变革,从日常使用的电子产品到航空航天,处处都有半导体的身影。可 以毫不夸张的说,半导体技术是现代电子信息技术发展的原动力和重要基础。
三、硅谷的诞生及仙童半导体的传奇
业内都说“先有仙童后有硅谷”要了解美国硅谷的发展史,那就绕不过早期的仙童半导体公司。
1955年,“本世纪最伟大发明”的“晶体管之父”的肖克利(W.Shockley)博士离开贝尔实验室, 肖克利回到了自己的家乡圣克拉拉(Santa Clara)谷,并创建“肖克利半导体实验室”。
世界英才慕名而来,最后肖克利在各领域的天才与精英中,确定了公司创立之初的八位成员,而这八位初创成员也是后来对硅谷乃至世界范围产生深远影响的“八叛将”(The Traitorous Eight):罗伯特·诺伊斯(Robert Noyce)、戈登·摩尔(Gordon Moore)、谢尔顿·罗伯茨(Sheldon Roberts)、朱利亚斯·布兰克(Julius Blank)、尤金·克莱纳(Eugene Kleiner)、金·赫尔尼(Jean Hoerni)、杰·拉斯特(Jay Lsat)、维克多·格里尼克(Victor Grinnich)。
1960s“八叛徒”离开肖克利成立了仙童半导体公司。到了1969年,“八叛将”的叛变精神再次燃烧,随着布兰克的出走,当初创立仙童的 “八叛将”也尽数离开了仙童半导体公司。一时间,仙童迎来了大量的离职潮,也由此孕育了更多的半导体公司的诞生。
(1)1961年,赫尔尼、拉斯特和罗伯特出走,三人创办了Amelco,就是后来的Teledyne(泰瑞达),从事半导体测试业务。
(2)1962年,克莱纳离开,创办了Edex以及后来知名的风险投资公司凯鹏华盈(KPCB)。
(3)鲍勃.韦勒,1966年离开仙童加入美国国家半导体公司。查尔斯·斯波克,1967年离开仙童加入美国国家半导体公司,任CEO。
(4)到了1968年,诺伊斯带着戈登·摩尔与工艺开发专家安迪·格鲁夫(Andrew S·Grove)离开了仙童半导体公司,而由他们三人所创立的公司就是由仙童衍生出来的公司中最为人所熟知的IT业巨头——英特尔(Intel)。
(5)仙童销售部门主任杰里·桑德斯(Jerry Sanders)带着几名员工创立了AMD半导体公司,成为英特尔的主要竞争对手。
(6)美国国家半导体(现已被TI收购),Altera(现已被英特尔收购)等的创始人都出自仙童半导体公司。
得到仙童半导体八位联合创始人支持的公司数量超过2000家,其中包括Instagram,Palantir,Pixar,Nest,Whatsapp,Yammer,以及苹果(乔布斯的创业得到过仙童半导体创始人的潜心指导,在此就不赘述了)。
乔布斯对仙童的评价:“仙童半导体公司就像棵成熟了的蒲公英,你一吹它,这种创业精神的种子就随风四处飘扬了”
到2013年为止,由仙童公司直接或间接衍生出来的公司共达到了92家,而其中上市的30家公司的市值更是超过了2.1万亿美元,产值甚至超过了当年的一些发展中国家GDP。
可以说是仙童给旧金山湾区带来了半导体产业,因为半导体的材料是硅,所以加州这个原本拗口的“圣塔克拉拉谷”,在上世纪70年代开始被更多的人称之为——硅谷(Silicon Valley)。
总之,以上就是芯片的发展历程,包括技术上的发展及硅谷的诞生。后面从产业链的转移角度,回顾芯片的发展。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)