什么是 PIN diode一个硅面结型二极管,在p型
半导体层和n型半导体层之间有一层轻渗杂的本征半导体层。其稠密的P和N掺杂区域被相对厚的高电阻率的本征层(I)所分隔,这是在P区和N区之间夹一层本征半导体(或低浓度杂质的半导体)构造的晶体二极管。PIN中的I是"本征"意义的英文略语。当其工作频率超过100MHz时,由于少数载流子的存贮效应和"本征"层中的渡越时间效应,其二极管失去整流作用而变成阻抗元件,并且,其阻抗值随偏置电压而改变。在零偏置或直流反向偏置时,"本征"区的阻抗很高;在直流正向偏置时,由于载流子注入"本征"区,而使"本征"区呈现出低阻抗状态。因此,可以把PIN二极管作为可变阻抗元件使用。它常被应用于高频开关(即微波开关)、移相、调制、限幅等电路中。它可以开关微波传输线辣且作为微波限制器在系统峰包功率小于100 kW时取代TR(发射和接收)管;它还可以用作可变微波衰减器,和在微波相阵控系统中作为电子控制的快速反应的移相器。PIN二极管的特性: 加负电压(或零偏压)时,PIN管等效为电容+电阻;加正电压时,PIN管等效为小电阻。用改变结构尺寸及选择PIN二极管参数的方法,使短路的阶梯脊波导的反射相位(基准相位)与加正电压的PIN管控制的短路波导的反射相位相同。还要求加负电压(或0偏置)的PIN管控制的短路波导的反射相位与标准相位相反(-164°~+164°之间即可)。 图1给出了PIN二极管在正向导通时的电荷分布情况.为简化起见,我们假设I区域中电子与
空穴分布对称且分布密度相同.设x=-d处的空穴分布密度为p1,在[-d,0]区域中的剩余空穴电荷为q2,且位于x=-d/2处,这样此区域的平均空穴密度为:p2=q2/qAd.这里A为结面积,q为单位电荷. 图1 PIN二极管的电荷分布 由于P+区域的空穴密度远大于电子密度,这样在x=-d处的电子
电流可以忽略(所引起的误差将在下文讨论).二极管的电流密度可以表示为其中 Da为扩散常数;Jh为空穴电流密度。二极管的电流为 电荷q2与电流的关系式为 其中 τa为寿命时间. 式(2)及式(3)描述了二极管的模型,通过定义qE=2q1, qM=2q2及T=d2/2Da,两式可简化为 图2表示了在感性负载时二极管的关断过程.此过程可分为两个阶段:从t=T0到t=T1,二极管处于低阻抗状态,其电压近似为0,在t=T1时刻,二极管中I区域边缘的剩余电荷变为0,二极管开始呈现高阻抗状态.在式(4)、(5)中令qE=0可得t=T1时刻后二极管的电流为 其中 τrr由式(7)给出,Irr为反向恢复电流峰值. 图2 反向恢复电流波形 一般情况下,trr、Irr及测试条件di/dt、IFM均在器件的产品手册上列出.根据式(6)及测试条件,τrr可由下式获得 其中 a=-di/dt. 根据图2所示的反向电流波形,qM在t≤T1阶段的表达式为 当t=T1时,i(T1)=-Irr=-qM(T1)/T,代入上式得式(10),τa可由此式解出 然后参数T可由τa、T及τrr的关系式(7)算出. 从以上的讨论可以看出,该模型的参数可以方便地从产品手册中得到:首先由式(8)计算τrr,再从式(10)解得τa,最后由式(7)决定参数T。 设计PIN二极管时需主要考虑几个参数 1. 插入损耗:开关在导通时衰减不为零,称为插入损耗 2. 隔离度:开关在断开时其衰减也非无穷大,称为隔离度 3. 开关时间: 由于电荷的存储效应,PIN管的通断和断通都需要一个过程,这个过程所需时间 4. 承受功率: 在给定的工作条件下,微波开关能够承受的最大输入功率 5. 电压驻波系数: 仅反映端口输入,输出匹配情况 6. 视频泄漏 7. 谐波: PIN二极管也具有非线性,因而会产生谐波,PIN开关在宽带应用场合,谐波可能落在使用频带内引起干扰. 开关分类:反射式和吸收式, 吸收式开关的性能较反射式开关优良 控制方式:采用TTL信号控制。'1'通'0'断 PIN二极管型号的选择主要是根据所做光功率计的测量范围来确定的。常用的PIN二极管(如FU-15PD)都是小信号工作器件,光敏面不合适,能接收的光功率范围很有限,所以一般不用它做光功率计的探测器。 PIN二极管还可以调节到高频范围。为改善隔离特性,我们可以将两个或多个二极管串联起来,但同时会引起介入损耗的增大。PIN二极管本质上还属于电流控制的电阻器。为减少介入损耗,它们需要采用大量的直流电源以降低I(本征)区内的电阻率。这显然会影响电池寿命。这种特点,再加上PIN二极管方案需要大量器件,使得这种技术很难应用于便携手持式产品。PIN管因为,P区一般是重掺杂,因此由电中性条件,QpWp=QiWi,可见耗尽区必然向本征区扩展,为了更好的吸收光能,本征区往往较厚,远厚于p区和n区,因此可以认为耗尽区扩展到整个半导体。
光电二极管在日常生活的应用非常广泛。它跟一般的二极管在结构和功能上几乎一致,也是由一个PN结组成的半导体器件,具有单方向导电的特性。所谓PN结就是连接P型半导体和N型半导体两者的接触面。虽然叫做结,但实际上并不是一个结点。PN结是半导体二极管、双极性晶体管等电子技术的物质基础。那么PIN光电二极管又是什么呢,与一般光电二极管在作用和工作原理上有什么区别呢,接下来小编就带着大家一起了解一下。
PIN光电二极管简介及作用
PIN光电二极管也叫做PIN结二极管或者是PIN二极管。这种二极管也涉及到两种半导体之间的PN结的运用,但与一般的光电二极管不同的是,PIN光电二极管在连接P型半导体和N型半导体之间还生成了一层I型半导体的物质,是用来吸收光辐射从而产生光电流的一种检测光信号的小型器件。简而言之,就是通过PIN层,将光信号转换成电信号。不仅反应灵敏,所需要的时间也很短。
PIN光电二极管工作原理简介
实际上PIN光电二极管内部的I型半导体是一种浓度很低的N型半导体。将低浓度的N型半导体渗入到PN结中间,能够有效扩大耗尽区的宽度,目的是减小扩散运动产生的影响,提高响应速度,即增强反应灵敏性。正是由于这种渗入到PN层的N型半导体浓度很低,几乎接近I型半导体,所以我们称这一层为I型层,PIN光电二极管也由此得名。
在I层的两侧分别是浓度很高的P型半导体和N型半导体,由于这两层浓度很高,所以很薄,可以吸入的入射光也自然较少。I层本征半导体浓度很低,但相对较厚,所以几乎占据了整个耗尽区的空间。大部分入射光透过P层或N层直接被I层吸收,并迅速产生大量的电子,从而很快将光能转化成电能。
半导体的应用仍然在探索当中。但PIN光电二极管早就被人们用来很好的将光信号转换成电信号。PIN光电二极管在设计时也会尽量增大PIN区的面积,以便能够接收更多的光信号,这样能转换和传输的电信号也会越多。光电传输就能更大效率地得到利用。
评论列表(0条)