半导体的价带和导带怎么得到

半导体的价带和导带怎么得到,第1张

对于未掺杂的本征半导体,导带中的电子是由它下面的一个能带(即价带)中的电子(价电子)跃迁上来而形成的,这种产生电子(同时也产生空穴——半导体的另外一种载流子)的过程

,称为本征激发。在本征激发过程中,电子和空穴是成对产生的,则总是有“电子浓度=空穴浓度”。这实际上就是本征半导体的特征,因此可以说,凡是两种载流子浓度相等的半导体,就是本征半导体。这就意味着,不仅未掺杂的半导体是本征半导体,就是掺杂的半导体,在一定条件下(例如高温下)也可以转变为本征半导体。

价带的能量低于导带,它也是由许多准连续的能级组成的。但是价带中的许多电子(价电子)并不能导电,而少量的价电子空位——空穴才能导电,故称空穴是载流子。空穴的最低能量——势能,也就是价带顶,通常空穴就处于价带顶附近。

价带顶与导带底之间的能量差,就是所谓半导体的禁带宽度。这就是产生本征激发所需要的最小平均能量。这是半导体最重要的一个特征参量。

先介绍本真半导体

本真半导体就是纯净的硅或者锗形成的半导体,但是这类半导体没多大用,因为其载流子浓度低,导电能力很差(其导电能力其实是由电子-空穴对表现出来的,电子离开原来的位置后,原来的位置就成为了空穴),于是人们就想出了参杂。

如果往硅里面参杂3价元素硼,那么可以得到P型半导体,这是为什么呢?

记住参杂的是原子,整块材料是电中性的。当参杂磷原子进去时,磷是元素周期表中15号元素,外围5个电子,而硅外围4个电子,但是磷只能和硅形成4个共价键。这就导致了还剩一个磷的电子落单,它很不稳定,动不动就离家出走,留下空穴。每参杂一个磷原子,便会有一个单身磷电子(对,就是这么可怜),所以整块材料中电子成为多数,空穴成为少数(空穴只在电子离家出走的时候形成),电子为多数载流子就叫N(negetive)型半导体.

反之,你可以类比P(positive )型半导体.

如何获得室温铁磁性半导体,是量子计算、高频器件、高密度信息存储的一个重要环节。国际权威期刊《Nano Today》近日刊文显示,郑州大学许群教授课题组利用CO2在非范德华力晶体孔道内构建强内应力场,成功制备出具有室温响应的二维铁磁性VO2。

许群介绍,面对更先进的信息技术需求,在更高集成度、更高快速响应、更低功耗等方面对电子器件有更高的要求。二维铁磁材料由于其少层原子层厚度和可控的电子自旋,已成为下一代自旋电子器件的研究热点。

他说,现有非磁性二维材料中诱导磁矩是通过调节应变、边缘结构或缺陷工程来引入电荷载流子,这些都集中在外部诱导磁响应上,如何突破传统制备模式并深刻理解二维铁磁材料的本征特性极具重要意义。

过渡金属氧化物VO2表现出许多新的物理现象,如金属-绝缘体转变和室温铁磁性。在强相关过渡金属氧化物(TMOs)材料中,d层和f层电子其自由度(自旋、电荷和轨道矩)的相互作用使得结构和磁性对温度、压力和组分等参数的微小变化非常敏感,然而多数情况,来自外部诱导的局部磁矩非常弱,并且产生的磁性通常只关联表面少数原子。因此相较于缺陷工程,如何打破序参量的对称性,在材料中创造新的表面或诱导晶体到无定形的转变,进而产生本征磁各向异性,是一个有效的路径。

许群教授课题组提出一种CO2诱导相变工程策略,将非范德华体相VO2成功转化为室温响应的2D铁磁体。引入的CO2不仅可以引发材料表界面相变,还可以在VO2的晶格孔道中产生强大的内力场,由此导致的共价键选择性断裂,将三维VO2晶体转化为二维纳米片,最终获得“锁定”的亚稳相的2D拓扑结构并表现出显著增强的室温铁磁响应。该研究工作为二维非范德华铁磁体的制备开辟了一条新途径,同时对CO2在晶体孔道中产生的内应力及其关联亚稳相产生的机理进行了探讨,为进一步拓展超临界CO2在构筑新型纳微结构上的应用奠定了实验和理论基础。该工作得到了国家自然科学基金、郑州大学一流学科计划等项目的支持。

编辑/范辉


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/8912885.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-22
下一篇 2023-04-22

发表评论

登录后才能评论

评论列表(0条)

保存