半导体产业深度报告:制造业巅峰,晶圆代工赛道持续繁荣

半导体产业深度报告:制造业巅峰,晶圆代工赛道持续繁荣,第1张

台积电开启晶圆代工时代,成为集成电路中最为重要的一个环节。 1987 年,台积电的成立开启了 晶圆代工时代,尤其在得到了英特尔的认证以后,晶圆代工被更多的半导体厂商所接受。晶圆代工 打破了 IDM 单一模式,成就了晶圆代工+IC 设计模式。目前,半导体行业垂直分工成为了主流, 新进入者大多数拥抱 fabless 模式,部分 IDM 厂商也在逐渐走向 fabless 或者 fablite 模式。

全球晶圆代工市场一直呈现快速增长,未来有望持续 。晶圆代工+IC 设计成为行业趋势以后,受益 互联网、移动互联网时代产品的强劲需求,整个行业一直保持快速增长,以台积电为例,其营业收 入从 1991 年的 1.7 亿美元增长到 2019 年的 346 亿美元,1991-2019 年,CAGR 为 21%。2019 年全球晶圆代工市场达到了 627 亿美元,占全球半导体市场约 15%。未来进入物联网时代,在 5G、 人工智能、大数据强劲需求下,晶圆代工行业有望保持持续快速增长。

晶圆代工行业现状:行业呈现寡头集中。 晶圆代工是制造业的颠覆,呈现资金壁垒高、技术难度大、 技术迭代快等特点,也因此导致了行业呈现寡头集中,其中台积电是晶圆代工行业绝对的领导者, 营收占比超过 50%,CR5 约为 90%。

晶圆代工行业资金壁垒高。 晶圆代工厂的资本性支出巨大,并且随着制程的提升,代工厂的资本支 出中枢不断提升。台积电资本支出从 11 年的 443 亿元增长到 19 年的 1094 亿元,CAGR 为 12%。 中芯国际资本性支出从 11 年的 30 亿元增长到了 19 年的 131 亿元,CAGR 为 20%,并且随着 14 nm 及 N+1 制程的推进,公司将显著增加 2020 年资本性支出,计划为 455 亿元。巨额投资将众多 追赶者挡在门外,新进入者难度极大。

随着制程提升,晶圆代工难度显著提升。 随着代工制程的提升,晶体管工艺、光刻、沉积、刻蚀、 检测、封装等技术需要全面创新,以此来支撑芯片性能天花板获得突破。

晶体管工艺持续创新。 传统的晶体管工艺为 bulk Si,也称为体硅平面结构(Planar FET)。 随着 MOS 管的尺寸不断的变小,即沟道的不断变小,会出现各种问题,如栅极漏电、泄漏功 率大等诸多问题,原先的结构开始力不从心,因此改进型的 SOI MOS 出现,与传统 MOS 结 构主要区别在于:SOI 器件具有掩埋氧化层,通常为 SiO2,其将基体与衬底隔离。由于氧化 层的存在,消除了远离栅极的泄漏路径,这可以降低功耗。随着制程持续提升,常规的二氧 化硅氧化层厚度变得极薄,例如在 65nm 工艺的晶体管中的二氧化硅层已经缩小仅有 5 个氧 原子的厚度了。二氧化硅层很难再进一步缩小了,否则产生的漏电流会让晶体管无法正常工 作。因此在 28nm 工艺中,高介电常数(K)的介电材料被引入代替了二氧化硅氧化层(又称 HKMG 技术)。随着设备尺寸的缩小,在较低的技术节点,例如 22nm 的,短沟道效应开始 变得更明显,降低了器件的性能。为了克服这个问题,FinFET 就此横空出世。FinFET 结构 结构提供了改进的电气控制的通道传导,能降低漏电流并克服一些短沟道效应。目前先进制 程都是采用 FinFET 结构。

制程提升,需要更精细的芯片,光刻机性能持续提升。 负责“雕刻”电路图案的核心制造设备是光刻机,它是芯片制造阶段最核心的设备之一,光刻机的精度决定了制程的精度。第四 代深紫外光刻机分为步进扫描投影光刻机和浸没式步进扫描投影光刻机,其中前者能实现最 小 130-65nm 工艺节点芯片的生产,后者能实现最小 45-22nm 工艺节点芯片的生产。通过多 次曝光刻蚀,浸没式步进扫描投影光刻机能实现 22/16/14/10nm 芯片制作。到了 7/5nm 工艺, DUV 光刻机已经较难实现生产,需要更为先进的 EUV 光刻机。EUV 生产难度极大,零部件 高达 10 万多个,全球仅 ASML 一家具备生产能力。目前 EUV 光刻机产量有限而且价格昂 贵,2019 年全年,ASML EUV 销量仅为 26 台,单台 EUV 售价高达 1.2 亿美元。

晶圆代工技术迭代快,利于头部代工厂。 芯片制程进入 90nm 节点以后,技术迭代变快,新的制程 几乎每两到三年就会出现。先进制程不但需要持续的研发投入,也需要持续的巨额资本性支出,而 且新投入的设备折旧很快,以台积电为例,新设备折旧年限为 5 年,5 年以后设备折旧完成,生产 成本会大幅度下降,头部厂商完成折旧以后会迅速降低代工价格,后进入者难以盈利。

2.1摩尔定律延续,技术难度与资本投入显著提升

追寻摩尔定律能让消费者享受更便宜的 力,晶圆代工是推动摩尔定律最重要的环节。 1965 年, 英特尔(Intel)创始人之一戈登·摩尔提出,当价格不变时,集成电路上可容纳的元器件的数目, 约每隔 18-24 个月便会增加一倍,性能也将提升一倍,这也是全球电子产品整体性能不断进化的核 心驱动力,以上定律就是著名的摩尔定律。换而言之,每一美元所能买到的电脑性能,将每隔 18- 24 个月翻一倍以上。推动摩尔定律的核心内容是发展更先进的制程,而晶圆代工是其中最重要的 环节。

摩尔定律仍在延续。 市场上一直有关于摩尔定律失效的顾虑,但是随着 45nm、28nm、10nm 持续 的推出,摩尔定律仍然保持着延续。台积电在 2018 年推出 7nm 先进工艺,2020 年开始量产 5nm, 并持续推进 3nm 的研究,预计 2022 年量产 3nm 工艺。IMEC 更是规划到了 1nm 的节点。此外, 美国国防高级研究计划局进一步提出了先进封装、存算一体、软件定义硬件处理器三个未来发展研 究与发展方向,以此来超越摩尔定律。在现在的时间点上来看,摩尔定律仍然在维持,但进一步提 升推动摩尔定律难度会显著提升。

先进制程资本性投入进一步飙升 。根据 IBS 的统计,先进制程资本性支出会显著提升。以 5nm 节 点为例,其投资成本高达数百亿美金,是 14nm 的两倍,是 28nm 的四倍。为了建设 5nm 产线, 2020 年,台积电计划全年资本性将达到 150-160 亿美元。先进制程不仅需要巨额的建设成本,而 且也提高了设计企业的门槛,根据 IBS 的预测,3nm 设计成本将会高达 5-15 亿美元。

3nm 及以下制程需要采用全新的晶体管工艺。 FinFET 已经历 16nm/14nm 和 10nm/7nm 两个工艺 世代,随着深宽比不断拉高,FinFET 逼近物理极限,为了制造出密度更高的芯片,环绕式栅极晶 体管(GAAFET,Gate-All-Ground FET)成为新的技术选择。不同于 FinFET,GAAFET 的沟道被 栅极四面包围,沟道电流比三面包裹的 FinFET 更加顺畅,能进一步改善对电流的控制,从而优化 栅极长度的微缩。三星、台积电、英特尔均引入 GAA 技术的研究,其中三星已经先一步将 GAA 用 于 3nm 芯片。如果制程到了 2nm 甚至 1nm 时,GAA 结构也许也会失效,需要更为先进的 2 维 、 甚至 3 维立体结构,目前微电子研究中心(Imec)正在开发面向 2nm 的 forksheet FET 结构。

3nm 及以下制程,光刻机也需要升级。 面向 3nm 及更先进的工艺,芯片制造商或将需要一种称为 高数值孔径 EUV(high-NA EUV)的光刻新技术。根据 ASML 年报,公司正在研发的下一代极紫 外光刻机将采用 high-NA 技术,有更高的数值孔径、分辨率和覆盖能力,较当前的 EUV 光刻机将 提高 70%。ASML 预测高数值孔径 EUV 将在 2022 年以后量产。

除上面提到巨额资本与技术难题以外,先进制程对沉积与刻蚀、检测、封装等环节也均有更高的要 求。正是因为面临巨大的资本和技术挑战,目前全球仅有台积电、三星、intel 在进一步追求摩尔定 律,中芯国际在持续追赶,而像联电、格罗方德等晶圆代工厂商已经放弃了 10nm 及以下制程工艺 的研发,全面转向特色工艺的研究与开发。先进制程的进一步推荐节奏将会放缓,为中芯国际追赶 创造了机会。

2.2先进制程占比持续提升,成熟工艺市场不断增长

高性能芯片需求旺盛,先进制程占比有望持续提升。 移动终端产品、高性能计算、 汽车 电子和通信 及物联网应用对算力的要求不断提升,要求更为先进的芯片,同时随着数据处理量的增加,存储芯 片的制程也在不断升级,先进制程的芯片占比有望持续提升。根据 ASML2018 年底的预测,到 2025 年,12 寸晶圆的先进制程占比有望达到 2/3。2019 年中,台积电 16nm 以上和以下制程分别占比 50%,根据公司预计,到 2020 年,16nm 及以下制程有望达到 55%。

CPU、逻辑 IC、存储器等一般采用先进制程(12 英寸),而功率分立器件、MEMS、模拟、CIS、 射频、电源芯片等产品(从 6μm 到 40nm 不等)则更多的采用成熟工艺(8 寸片)。 汽车 、移动 终端及可穿戴设备中超过 70%的芯片是在不大于 8 英寸的晶圆上制作完成。相比 12 寸晶圆产线,8 寸晶圆制造厂具备达到成本效益生产量要求较低的优势,因此 8 寸晶圆和 12 寸晶圆能够实现优 势互补、长期共存。

受益于物联网、 汽车 电子的快速发展,MCU、电源管理 IC、MOSFET、ToF、传感器 IC、射频芯 片等需求持续快速增长。 社会 已经从移动互联网时代进入了物联网时代,移动互联网时代联网设备 主要是以手机为主,联网设备数量级在 40 亿左右,物联网时代,设备联网数量将会成倍增加,高 通预计到 2020 年联网 设备数量有望达到 250 亿以上。飙升的物联网设备需要需要大量的成熟工艺 制程的芯片。以电源管理芯片为例,根据台积电年报数据,公司高压及电源管理晶片出货量从 2014 年的 1800 万片(8 寸)增长到 2019 年的 2900 万片,CAGR 为 10%。根据 IHS 的预测,成熟晶 圆代工市场规模有望从 2020 年的 372 亿美元增长到 2025 年的 415 亿美元。

特色工艺前景依旧广阔,主要代工厂积极布局特色工艺。 巨大的物联网市场前景,吸引了众多 IC 设计公司开发新产品。晶圆代工企业也瞄准了物联网的巨大商机,频频推出新技术,配合设计公司 更快、更好地推出新一代芯片,助力物联网产业高速发展。台积电和三星不仅在先进工艺方面领先布局,在特色工艺方面也深入布局,例如台积电在图像传感器领域、三星在存储芯片领域都深入布 局。联电、格罗方德、中芯国际、华虹半导体等代工厂也全面布局各自的特色工艺,在射频、 汽车 电子、IOT 等领域,形成了各自的特色。

5G 时代终端应用数据量爆炸式提升增加了对半导体芯片的需求,晶圆代工赛道持续繁荣。 随着对 于 5G 通信网络的建设不断推进,不仅带动数据量的爆炸式提升,要求芯片对数据的采集、处理、 存 储 效率更高,而且也催生了诸多 4G 时代难以实现的终端应用,如物联网、车联网等,增加了终 端对芯片的需求范围。对于芯片需求的增长将使得下游的晶圆代工赛道收益,未来市场前景极其广 阔。根据 IHS 预测,晶圆代工市场规模有望从 2020 年的 584 亿美元,增长到 2025 年的 857 亿美 元,CAGR 为 8%。

3.15G 推动手机芯片需求量上涨

5G 手机渗透率快速提升。手机已经进入存量时代,主要以换机为主。2019 年全球智能手机出货量 为 13.7 亿部,2020 年受疫情影响,IDC 等预测手机总体出货量为 12.5 亿台,后续随着疫情的恢 复以及 5G 产业链的成熟,5G 手机有望快速渗透并带动整个手机出货。根据 IDC 等机构预测,5G 手机出货量有望从 2020 年的 1.83 增长到 2024 年的 11.63 亿台,CAGR 为 59%。

5G 手机 SOC、存储和图像传感器全面升级,晶圆代工行业充分受益。 消费者对手机的要求越来越 高,需要更清晰的拍照功能、更好的 游戏 体验、多任务处理等等,因此手机 SOC 性能、存储性能、 图像传感器性能全面提升。目前旗舰机的芯片都已经达到了 7nm 制程,随着台积电下半年 5 nm 产 能的释放,手机 SOC 有望进入 5nm 时代。照片精度的提高,王者荣耀、吃鸡等大型手游和 VLOG 视频等内容的盛行,对手机闪存容量和速度也提出了更高的要求,LPDDR5 在 2020 年初已经正式 亮相小米 10 系列和三星 S20 系列,相较于上一代的 LPDDR4,新的 LPDDR5 标准将其 I/O 速 度从 3200MT/s 提升到 6400MT/s,理论上每秒可以传输 51.2GB 的数据。相机创新是消费者更 换新机的主要动力之一,近些年来相机创新一直在快速迭代,一方面,多摄弥补了单一相机功能不 足的缺点,另一方面,主摄像素提升带给消费者更多的高清瞬间,这两个方向的创新对晶圆及代工 的需求都显著提升。5G 时代,手机芯片晶圆代工市场将会迎来量价齐升。

5G 手机信号频段增加,射频前端芯片市场有望持续快速增长。射频前端担任信号的收发工作,包 括低噪放大器、功率放大器、滤波器、双工器、开关等。相较于 4G 频段,5G 的频段增加了中高 频的 Sub-6 频段,以及未来的更高频的毫米波频段。根据 yole 预测,射频前端市场有望从 2018 年 的 149 亿美元,增长到 2023 年的 313 亿美元,CAGR 为 16%。

3.2云计算前景广阔,服务器有望迎来快速增长

2020 年是国内 5G 大规模落地元年,有望带来更多数据流量需求 。据中国信通院在 2019 年 12 月 份发布的报告,2020 年中国 5G 用户将从去年的 446 万增长到 1 亿人,到 2024 年我国 5G 用户 渗透率将达到 45%,人数将超过 7.7 亿人,全球将达到 12 亿人,5G 用户数的高增长带来流量的 更高增长。

5G 时代来临,云计算产业前景广阔。 进入 5G 时代,IoT 设备数量将快速增加,同时应用的在线 使用需求和访问流量将快速爆发,这将进一步推动云计算产业规模的增长。根据前瞻产业研究院的 报告,2018 年中国云计算产业规模达到了 963 亿元,到 2024 年有望增长到 4445 亿元,CAGR 为 29%,产业前景广阔。

边缘计算是云计算的重要补充,迎来新一轮发展高潮。 根据赛迪顾问的数据,2018 年全球边缘计 算市场规模达到 51.4 亿美元,同比增长率 57.7%,预计未来年均复合增长率将超过 50%。而中国 边缘计算市场规模在 2018 年达到了 77.4 亿元,并且 2018-2021 将保持 61%的年复合增长率,到 2021 年达到 325.3 亿元。

服务器大成长周期确定性强。 服务器短期拐点已现,受益在线办公和在线教育需求旺盛,2020 年 服务器需求有望维持快速增长。长期来看,受益于 5G、云计算、边缘计算强劲需求,服务器销量 有望保持持续高增长。根据 IDC 预测,2024 年全球服务器销量有望达到 1938 万台,19-24 年, CAGR 为 13%。

服务器半导体需求持续有望迎来快速增长,晶圆代工充分受益。 随着服务器数量和性能的提升,服 务器逻辑芯片、存储芯片对晶圆的需求有望快速增长,根据 Sumco 的预测,服务器对 12 寸晶圆 需求有望从 2019 年的 80 万片/月,增长到 2024 年的 158 万片/月,19-24 年 CAGR 为 8%。晶圆 代工市场有望充分受益服务器芯片量价齐升。

3.3三大趋势推动 汽车 半导体价值量提升

传统内燃机主要价值量主要集中在其动力系统。 而随着人们对于 汽车 出行便捷性、信息化的要求逐 渐提高, 汽车 逐步走向电动化、智能化、网联化,这将促使微处理器、存储器、功率器件、传感器、 车载摄像头、雷达等更为广泛的用于 汽车 发动机控制、底盘控制、电池控制、车身控制、导航及车 载 娱乐 系统中, 汽车 半导体产品的用量显著增加。

车用半导体有望迎来加速增长。 根据 IHS 的报告,车用半导体销售额 2019 年为 410 亿美元,13- 19 年 CAGR 为 8%。随着 汽车 加速电动化、智能化、网联化,车用芯片市场规模有望迎来加速, 根据 Gartner 的数据,全球 汽车 半导体市场 2019 年销售规模达 410.13 亿美元,预计 2022 年有望 达到 651 亿美元,占全球半导体市场规模的比例有望达到 12%,并成为半导体下游应用领域中增 速最快的部分。

自动驾驶芯片要求高,有望进一步拉动先进制程需求。 自动驾驶是通过雷达、摄像头等将采集车辆 周边的信息,然后通过自动驾驶芯片处理数据并给出反馈,以此降低交通事故的发生率、提高城市 中的运载效率并降低驾驶员的驾驶强度。自动驾驶要求多传感器之间能够及时、高效地传递信息, 并同时完成路线规划和决策,因此需要完成大量的数据运算和处理工作。随着自动驾驶级别的上升, 对于芯片算力的要求也越高,产生的半导体需求和价值量也随之水涨船高。英伟达自动驾驶芯片随 着自动驾驶级别的提升,芯片制程也显著提升,最早 Drive PX 采用的是 20nm 工艺,而最新 2019 年发布的 Drive AGX Orin 将会采用三星 8nm 工艺。根据英飞凌的预测,自动驾驶给 汽车 所需要的 半导体价值带来相当可观的增量,一辆车如果实现 Level2 自动驾驶,半导体价值增量就将达到 160 美元,若自动驾驶级别达到 level4&5,增量将会达到 970 美元。

3.4IoT 快速增长,芯片类型多

随着行业标准完善、技术不断进步、政策的扶持,全球物联网市场有望迎来爆发性增长。GSMA 预 测,中国 IOT 设备联网数将会从 2019 年的 36 亿台, 增到 到 2025 年的 80 亿台,19-25 年 CAGR 为 17.3%。根据全球第二大市场研究机构 MarketsandMarkets 的报告,2018 年全球 IoT 市场规模 为 795 亿美元,预计到 2023 年将增长到 2196 亿美元,18-23 年 CAGR 为 22.5%。

物联网的发展需要大量芯片支撑,半导体市场规模有望迎来进一步增长 。物联网感知层的核心部件 是传感器系统,产品需要从现实世界中采集图像、温度、声音等多种信息,以实现对于所处场景的 智能分析。感知需要向设备中植入大量的 MEMS 芯片,例如麦克风、陀螺仪、加速度计等;设备 互通互联需要大量的通信芯片,包括蓝牙、WIFI、蜂窝网等;物联网时代终端数量和数据传输通道 数量大幅增加,安全性成为最重要的需求之一,为了避免产品受到恶意攻击,需要各种类型的安全 芯片作支持;同时,身份识别能够保障信息不被盗用,催生了对于虹膜识别和指纹识别芯片的需求; 作为物联网终端的总控制点,MCU 芯片更是至关重要,根据 IC Insights 的预测,2018 年 MCU 市 场规模增长 11%,预计未来四年内 CAGR 达 7.2%,到 2022 年将超过 240 亿美元。

4.1 国内 IC 设计企业快速增长,代工需求进一步放量

国内集成电路需求旺盛,有望持续维持快速增长。 国内集成电路市场需求旺盛,从 2013 年的 820 亿美元快速增长到 2018 年的 1550 亿美元,CAGR 为 13.6%,IC insight 预测,到 2023 年,中国 集成电路市场需求有望达到 2290 亿美元,CAGR 为 8%。但是同时,国内集成电路自给率也严重 不足,2018 年仅为 15%,IC insight 在 2019 年预测,到 2023 年,国内集成电路自给率为 20%。

需求驱动,国内 IC 设计快速成长。 在市场巨大的需求驱动下,国内 IC 设计企业数量快速增加,尤 其近几年,在国内政策的鼓励下,以及中美贸易摩擦大的背景下,IC 设计企业数量加速增加,2019 年底,国内 IC 设计企业数量已经达到了 1780 家,2010-2019 年,CAGR 为 13%。根据中芯国际 的数据,国内 IC 设计公司营收 2020 年有望达到 480 亿美元,2011-2020 年 CAGR 为 24%,远 高于同期国际 4%的复合增长率。

国内已逐步形成头部 IC 设计企业。 根据中国半导体行业协会的统计,2019 年营收前十的入围门槛 从 30 亿元大幅上升到 48 亿元,这十大企业的增速也同样十分惊人,达到 47%。国内 IC 企业逐步 做大做强,部分领域已经形成了一些头部企业:手机 SoC 芯片领域有华为海思、中兴微电子深度 布局;图像传感领域韦尔豪威大放异彩;汇顶 科技 于 2019 年引爆了光学屏下指纹市场;卓胜微、 澜起 科技 分别在射频开关和内存接口领域取得全球领先。IC 设计企业快速成长有望保持对晶圆代 工的强劲需求。

晶圆代工自给率不足。 中国是全球最大的半导体需求市场,根据中芯国际的预测,2020 年中国对 半导体产品的需求为 2130 亿美元,占全球总市场份额为 49%,但是与之相比的是晶圆代工市场份 额严重不足,根据拓墣研究的数据,2020Q2,中芯国际和华虹半导体份额加起来才 6%,晶圆代 工自给率严重不足,尤其考虑到中国 IC 设计企业数量快速增长,未来的需求有望持续增长,而且, 美国对华为等企业的禁令,更是让我们意识到了提升本土晶圆代工技术和产能的重要性。

4.2政策与融资支持,中国晶圆代工企业迎来良机(略)

晶圆代工需求不断增长,但国内自给严重不足,受益需求与国内政策双重驱动,国内晶圆代工迎来 良机。建议关注:国内晶圆代工龙头,突破先进制程瓶颈的中芯国际-U、特色化晶 圆代工与功率半导体 IDM 双翼发展的华润微华润微、坚持特色工艺,盈利能力强的华虹半导体华虹半导体。

……

(报告观点属于原作者,仅供参考。作者:东方证券,蒯剑、马天翼)

如需完整报告请登录【未来智库】www.vzkoo.com。

湿法腐蚀的优点在于可以控制腐蚀液的化学成分,使得腐蚀液对特定薄膜材料的腐蚀速率远远大于其他材料的腐蚀速率,从而提高腐蚀的选择性。但是,由于湿法腐蚀的化学反应是各向同性的,因而位于光刻胶边缘下边的薄膜材料就不可避免的遭到腐蚀,这就使得湿法腐蚀无法满足ULSI工艺对加工精细线条的要求。所以相对于各向同性的湿法腐蚀,各向异性的干法刻蚀就成为了当前集成电路技术中刻蚀工艺的主流。 一、干法刻蚀的原理 干法刻蚀是指利用等离子体激活的化学反应或者是利用高能离子束轰击去除物质的方法。因为在刻蚀中并不使用溶液,所以称之为干法刻蚀。干法刻蚀因其原理不同可分为两种,一种是利用辉光放电产生的活性粒子与需要刻蚀的材料发生化学反应形成挥发性产物完成刻蚀,也称为等离子体刻蚀。第二种是通过高能离子轰击需要刻蚀的材料表面,使材料表面产生损伤并去除损伤的物理过程完成刻蚀,这种刻蚀是通过溅射过程完成的,也称为溅射刻蚀。上述两种方法的结合就产生了第三种刻蚀方法,称为反应离子刻蚀(简称RIE)。 在干法刻蚀中,纵向上的刻蚀速率远大于横向的刻蚀速率。这样,位于光刻胶边缘下边的材料,由于受到光刻胶的保护就不会被刻蚀。不过,在干法刻蚀的过程中,离子会对硅片上的光刻胶和无保护的薄膜同时进行轰击刻蚀,其刻蚀的选择性就比湿法刻蚀差(所谓的选择性是指刻蚀工艺对刻蚀薄膜和其他材料的刻蚀速率的比值,选择性越高,表示刻蚀主要是在需要刻蚀的材料上进行)。 在等离子体中存在有离子、电子和游离基(游离态的原子、分子或原子团)等,这些游离态的原子、分子或原子团等活性粒子,具有很强的化学活性,如果在这种等离子体中放入硅片,位于硅片表面上的薄膜材料原子就会与等离子体中的激发态游离基发生化学反应,生成挥发性的物质,从而使薄膜材料受到刻蚀,这就是等离子体刻蚀的原理和过程。因为等离子体刻蚀主要是通过化学反应完成的,所以具有比较好的选择性,但是各向异性就相对较差。 在溅射刻蚀过程中,等离子体的高能离子射到硅片表面上的薄膜表面时,通过碰撞,高能离子与被碰撞的原子之间就会发生能量和动量的转移,从而使被撞原子受到扰动。如果轰击离子传递给被撞原子的能量比原来的结合能(从几个eV到几十个eV)还要大,就会使被撞原子脱离原来的位置飞溅出来,产生溅射现象。例如,辉光放电中产生的氩离子,其能量高达500eV以上,这种高能离子束轰击硅片上的薄膜表面就会形成溅射刻蚀。溅射刻蚀的优点是各向异性刻蚀,而且效果很好,但是对刻蚀的选择性相对较差。 反应离子刻蚀是一种介于溅射刻蚀与等离子体刻蚀之间的干法刻蚀技术。在反应离子刻蚀中,同时利用了物理溅射和化学反应的刻蚀机制。反应离子刻蚀与溅射刻蚀的主要区别是,反应离子刻蚀使用的不是惰性气体,而是与等离子体刻蚀所使用的气体相同。由于在反应离子刻蚀中化学和物理作用都有助于实现刻蚀,因此就可以灵活的工作条件以求获得最佳的刻蚀效果。举例来说,如果某种气体的等离子体只与Si起化学反应,由于化学反应阻挡层SiO2的存在,就可以得到良好的Si/SiO2刻蚀速率比,从而保证刻蚀选择性的要求。反应离子刻蚀的缺点在于刻蚀重点难以检测。 综上所述,等离子体刻蚀和溅射刻蚀之间并没有明显的界限,一般来说,在刻蚀中物理作用和化学反应都可以发生。我们分析反应离子刻蚀、等离子体刻蚀和溅射刻蚀之间的关系可以看到:在反应离子刻蚀中,物理和化学作用都特别重要;在等离子体刻蚀中,物理效应很弱,主要是化学反应;而在溅射刻蚀中,几乎是纯物理作用。比较这三种刻蚀技术我们还可以发现,它们都是利用低压状态下(约0.01—133Pa)气体放电来形成等离子体作为干法刻蚀的基础,其区别是放电条件、使用气体的类型和所用反应系统的不同。刻蚀反应的模式取决于刻蚀系统的压力、温度、气流、功率和相关的可控参数。目前,在集成电路工艺过程中广泛使用的是反应离子技术。下面简要介绍采用干法刻蚀对集成电路制造中常用材料的刻蚀情况。 二、二氧化硅和硅的干法刻蚀 二氧化硅在集成电路工艺中的应用非常广泛,它可以作为隔离MOSFET的场氧化层,或者是MOSFET的栅氧化层,也可以作为金属间的介电材料,直至作为器件的最后保护层。因此,在集成电路工艺中对SiO2的刻蚀是最为频繁的。在ULSI工艺中对二氧化硅的刻蚀通常是在含有氟化碳的等离子体中进行。早期刻蚀使用的气体为四氟化碳(CF4),现在使用比较广泛的气体主要有CHF3、C2F4、SF4,其目的都是用来提供碳原子核和氟原子与SO2进行反应。以CF4为例,当CF4与高能量电子(约10eV以上)碰撞时,就会产生各种离子、原子团、原子和游离基。其中产生氟游离基和CF3分子的电离反应。氟游离基可以与SiO, 和Si 发生化学反应。反应将生成具挥发性的四氟化硅(SiF4)。 CF4+e——CF3 十F(游离基)+e SiO2+4F——SiF4(气)+02 Si+4F——SiF4(气) 在ULSI工艺中对SiO2 的干法刻蚀主要是用于刻蚀接触窗口,以MOSFET的接触窗口刻蚀为例。在MOSFET的上方覆盖有SiO2 层(通常是硼磷硅玻璃,简称BPSG), 为了实现金属层与 MOSFET的源/漏极之间的接触,需要刻蚀掉位于 MOSFET源/漏极上方的SiO2。为了使金属与 MOSFET源/漏极能够充分接触,源/漏极上方的SiQ2必须彻底清除。但是在使用CF4等离子体对SiO2进行刻蚀时,等离子体在刻蚀完 SiO2之后,会继续对硅进行刻蚀。因此,在刻蚀硅上的二氧化硅时,必须认真考虑刻蚀的选择性问题。 为了解决这一问题,在CF4 等离子体中通常加人一些附加的气体成份,这些附加的气体成份可以影响刻蚀速度、刻蚀的选择性、均匀性和刻蚀后图形边缘的剖面效果。 在使用CF4对硅和二氧化硅进行等离子刻蚀时,如果在CF4的等离子体中加人适量的氧气,氧气也同样被电离。其中,氧原子将与CF4反应生成CO和CO2 , 以及少量的COF2 ,另一方面,氟原子在与SiO2反应的同时,还与CF4原子团(x≤3)结合而消耗掉。在纯CF4等离子体中,由于存在使氟原子消耗的反应,造成氟原子的稳态浓度比较低,所以刻蚀的速度也比较慢。如果加入氧,则氧可与CFx原子团形成COF2 , CO和CO2, 造成CF, 原子团耗尽,从而减少了氟原子的消耗,进而使得CFx等离子体内的氟原子数对碳原子数的比例上升,其结果是氟原子的浓度增加,从而加快SiO2 的刻蚀速度。 对于CF, 刻蚀Si薄膜,也有相同的情况。在CF4刻蚀二氧化硅的过程中,氧的组分大约占20%时刻蚀的速度达到最大值。而使用CF4刻蚀硅,刻蚀速度最大时氧的组分大约占12% 。继续增加氧的组分,刻蚀速度将会下降,而且硅刻蚀速度的下降程度比刻蚀二氧化硅快。对于刻蚀 SiO2而言,氧的组分达到23%之前,刻蚀速度都是增加的,在达到氧组分临界值之后,由于氟原子浓度被氧冲淡,刻蚀速度开始下降。另一方面,由干于反应是在薄膜表面进行的,在刻蚀硅的情况下,氧原子倾向于吸附在Si的表面上,这样就部分地阻挡了氟原子加人反应。随着更多氧的吸附,对Si的刻蚀影响进一步增加。而在刻蚀二氧化硅时就不存在类似的效应。因为等效地看,SiO2的表面一开始就被氧原子所包围。因此,对硅的刻蚀速度最大时,其氧气的组分要小于刻蚀 SiO2的情况。 如果在CF4等离子体中加人氢,情况就会完全不同。在反应离子刻蚀二氧化硅的过程中,在相当低的气压下加大氢的组分,二氧化硅的刻蚀速度随氢的组分的增加而缓慢减小,这种情况可以持续到氢的组分大约占40%.而对于硅的刻蚀来说,刻蚀速度随氢组分的增加快速下降,当氢的组分大于40%时,对Si的刻蚀将停止。在CF4等离子体中加人氢对刻蚀的影响情况。 我们可以通过CF4等离子体刻蚀Si和SiO2的化学反应机制来解释这一现象。在刻蚀Si的过程中,氟原子与氢原子发生反应,从而使氢原子的浓度下降,这样等离子体中碳的含量升高,刻蚀反应就会被生成高分子聚合物的反应所代替,这就减小了对Si的刻蚀速度。另一方面,CFx(x≤3)原子团也可以与Si反应,生成挥发性的 SiF, 但是反应剩余的碳原子会吸附在Si的表面上,这些碳原子就会妨碍后续反应的进行。对于刻蚀SiO2的情况,氟原子也会与氢原子发生反应,氢原子的浓度下降也使SiO2的刻蚀速度减缓。面与刻蚀Si的情况不同的是,在CFx(x≤3)原子团与SiO2反应生成挥发性的SiF4的同时,CFx(X<3)原子团中的碳原子可以与二氧化硅中的氧原子结合,生成CO, CO2以及COF2气体,因此SiO2刻蚀速度的减缓程度要小于刻蚀Si的情况。在氢浓度超过40%以后,由于大量的氟原子与氢反应,CF4等离子体中的碳浓度开始上升,这也会在二氧化硅的表面形成高分个聚合物,从而使SiO2的刻蚀速度下降。 总的来看,在CF4等离子体中添加其他气体成份可影响等离子体内氟原子与碳原予的比例,简称F/C比。如果F/C比比较高(在CF4等离子体中添加氧气), 其影响倾向于加快刻蚀。反之,如果F/C比比较低(在CF4等离子体中添加氢气), 刻蚀过程倾向于形成高分子聚合物薄膜。 根据上述研究,可以通过在CF4等离子体中加人其他气体成份的方法,来解决选择性刻蚀 SiO2/Si的问题。如果CF4等离子体中O2的含量增加,刻蚀 Si 和刻蚀 SiO2的速度都加快,并且Si刻蚀速度的加快程度要大于刻蚀 SiO2的情况。因此,在CF4等离子体中加人O2将导致 SiO2/Si 刻蚀的选择性变差。在CF4等离子体中加人氢气对 SiO2的刻蚀影响不大,但是可以减小对Si的刻蚀速度。这说明在CF4等离子体中加人适量的氢气,将可以加强SiO2/Si刻蚀的选择性。 在当前集成电路工艺的干法刻蚀中,通常使用CHF3等离子体来进行SiO2的刻蚀。有时在刻蚀的过程中还要加人少量的氧气来提高刻蚀的速度。此外,SF6和NF3可以用来做为提供氟原子的气体。因为SF6和NF3中不含碳原子,所以不会在Si的表面形成高分子聚合物薄膜。 三、Si3N4的干法刻蚀 在ULSI工艺中,Si3N4的用途主要有两种:一种是在二氧化硅层上通过LPCVD 淀积Si3N4薄膜,然后经过光刻和干法刻蚀形成图形,做为接下来氧化或扩散的掩蔽层,但是并不成为器件的组成部分。这类Si3N4薄膜可以使用CF4, CF4(加O2, SF6和NF3)的等离子体刻蚀。另一种是通过 PECVD 淀积Si3N4做为器件保护层,这层 Si3N4 在经过光刻和干法刻蚀之后,氮化硅下面的金属化层露了出来,就形成了器件的压焊点,然后就可以进行测试和封装了。对于这种Si3N4薄膜,使用CF4-O2等离子体或其他含有F原子的气体等离子体进行刻蚀就可以满足要求。 实际上用于刻蚀SiO2的方法,都可以用来刻蚀 Si3N4.由于Si-N键的结合能介于Si-0键与 Si-Si键之间,所以氮化硅的刻蚀速度在刻蚀 SiO2和刻蚀Si之间。这样,如果对Si3N4/SiO, 的刻蚀中使用 CF4或是其他含氟原子的气体等离子体,对Si3N4/SiO2的刻蚀选择性将会比较差。如果使用 CHF3等离子体来进行刻蚀,对SiO2/Si的刻蚀选择性可以在10以上,而对Si3N4/Si的选择性则只有3~5左右,对 Si3N4/SiO2的选择性只有2~4左右。 刻蚀速率R是干法刻蚀的主要参数,刻蚀速率低,易于控制,但不适合实际生产要求。对于ULSI制造工艺,要有足够的刻蚀速率,且能重复、稳定的运用于生产中。这一节讨论几个影响刻蚀速率的主要因素。 四、离子能量和入射角 因为溅射刻蚀是利用物理溅射现象来完成的,所以,刻蚀速率由溅射率、离子束人射角和入射流密度决定,溅射率S定义为一个人射离子所能溅射出来的原子数。离子能量达到某一阈值能量以后(大约20 eV), 才能产生溅射,要想得到实用的溅射刻蚀速率,离子能量必须比阙值能量大得多(达几百eV以上)。在刻蚀工艺中离子的能量一般≤2keV, 在这 个能量范围内,大多数材料的溅射率随离子能量的增加单调上升,当离子能量达到一定程度之后,刻蚀速率随能量的增加是缓慢的。对于·ULSI所用的材料,Ar+离子能量为500eV 时,溅射率的典型值为0. 5~1. 5. 离子人射角表示离子射向衬底表面的角度(垂直于表面人射时,), 它是溅射率的敏感函数。当人射角大于零并增大时,衬底原子脱离表面飞出的几率增大,但是当人射角超过某一值时,在表面反射的离子增多,溅射率下降。人射角从零逐渐增加,S值也逐渐增大,在某一角度0-0max时,溅射率达到最大值,随后又逐渐减小,当0=90时,溅射率减小到零,即S=0. 在等离子体刻蚀和反应离子刻蚀中,溅射对刻蚀速率的贡献很小,更重要的是离子与材料表面之间的化学反应。但实验证明,由等离子体产生的中性粒子与固体表面之间的作用将加速反应,这种离子加速反应在许多干法蚀工艺中都起着重要作用。图8. 32是离子加速刻蚀的例子,图中分别给出Ar+和XeF2离子束射向硅表面的情况,每种离子束单独人射时,刻蚀速率都相当低。Ar+离子束是物理溅射刻蚀,XeF2解离为Xe 和两个F原子,然后,F原子自发地和硅反应形成挥发性氟化硅。当450 eV的Ar+离子束和XeF2气体同时人射时,刻蚀速率非常高,大约为两种离子束单独刻蚀速率总和的8倍。 图8. 33 表示的是离子加速反应的另一个例子,图中给出的是有Ar+存在时,CI2与硅的反应。与F原子不同,Cl2不能自发地刻蚀硅,当用450eV的Ar+离子束和Cl2同时射向表面时,硅被刻蚀,而且刻蚀速率比 Ar +溅射的刻蚀速率高得多。由图中可以看到,约轰击220秒时加人CI2气,刻蚀速率发生跃变,这是由于大量氯的存在所引起的。有几种可以解释离子加速反应的机理。① 离子轰击将在衬底表面产生损伤或缺陷,加速了化学反应过程;②离子轰击可直接离解反应剂分子(例如XeF2或Cl2)③离子轰击可以清除表面不挥发的残余物质。对这些机理及它们的相对重要性的研究仍旧是一个重要课题,并有所争论。 在上述的第一种情况中(XeF2十Si), 没有离子轰击时,离解的F原子可自发地刻蚀硅,但刻蚀速率低,在高能离子轰击下,提高了总刻蚀速率;在第二种情况下,没有高能离子轰击,(Cl2+Si)是不发生反应的。我们称前者为离子增强刻蚀;后一种情况称为离子感应刻蚀。 这两个例子说明,离子束刻蚀情况是与物过程有关的,并不是惰性气体离子的化学反应的贡献。在(XeF2十Si)和(Cl2+Si)的加速反应中,若离子能量为1keV时,Ar+, Ne+和He+离子的加速作用依次为Ar+>Ne+>He+。大量的研究结果表明,这些离子的加速作用与动量转移有关。但是,在CF4及其有关气体的等离子体刻蚀中,情况又不一样,这里离子本身就含有反应剂(例如CF3+)。在用XeF2刻蚀Si,并同时进行离子轰击的情况下,若用CF3+代替Ar+进行轰击,其刻蚀速率基本上不发生变化。因此,高能离子通过物理过程可以增强反应过程,与离子的化学反应无关。 对于反应离子刻蚀,等离子体中产生的主要是中性反应物,这些中性反应物先吸附于固体表面,再与表面原子反应,形成的反应物再解析成挥发性物质,整个反应可有等离子体中的高能离子诱发并加速。当然,高能离子提高反应速率的程度取决于所用的气体,材料和工艺参数的选取。 五、气体成份气体成份在等离子体刻蚀或反应离子到蚀中是影响刻蚀速率和选择性的关键因素,表8、1是VLSI制造中常用材料的一些代表性刻蚀气体。由表8.1可见,除了去除光削胶和刻蚀有机质之外,VLSI中主要使用卤素气体。选择气体的主要依据是,在等离子刻蚀温度(室温附近)下,它们是否能和剥蚀材料形成挥发性或准挥发性卤化物,由于含卤气体能相当容易地剂蚀VLSI所用的无机材料,而且工艺危害也很小,所以,卤化毒气体占有主要优势。 在反应刻蚀中,经常使用的是含多种成份的混合气体,这些混合气体由一种主要气体加入一种或几种添加剂组成,添加剂的作用是改善刻蚀速率、选择性、均匀性和刻蚀剖面。例如,在刻蚀Si和SiO2时,使用CF4为主的混合气体, 六、气体流速 气体流速决定反应剂的有效供给程度。反应剂的实际需要取决于有效反应物质产生与消耗之间的平衡过程,刻蚀剂损失的主要机制是漂移、扩散、复合以及附着和输运。 在一般工作条件中,气体流速射到蚀邃率R的影响不大,在极端情况下,可以观察到气体液邃的影响,例如,诙邃很小,刻蚀速率受反应剂供给量的限制1相反,当流邃很大时,输运成为反应剂损失的主要原因。是否发生输出损失取决于泵速、气体和反应器内的材料,在一般情况下,活性反应剂的寿命根短,流速的影响不必考虑}当活性剂的寿命较长(例如F原子)时,流速对刻蚀速率R产生影响,由图8.34可见,R-1是流速的线性函数,这与反应剂滞留时间与流速的关系一致,说明在所示的条件下,活性剂的寿命由输运损失决定。 七、温度在反应剥蚀中,M度对刻蚀速率的影响主要是通过化学反应j直率体现的。为获得均匀、重复的刻蚀速率,必须认真控制衬底温度,等离子体加热是衬底温度上升的主要原因;此外,刻蚀过程的放热效应也不可忽视。 八、压力、功率密度和频率 压力、功率密度和频率都是独立的工艺参数,但在实际中,它们各自对刻蚀工艺的影响是难以预计的。压力和频率较低,而功率密度较高,可以提高电子能量和人射离子的能量,增加功率也可提高等离子体中活性剂和离子的密度。因此,在离子加速反应刻蚀中,降低压力或频率,或增加功率密度,可以获得更好的各向异性刻蚀。 一般刻蚀速率单调地随功率而增加。由于外加功率几乎都要转变为热量,因此,在功率密度板高时,样品温度升高,需要考虑衬底散热,否则,会造成有害的影响。 系统压力对到蚀速率的影响,随刻蚀材料及气体的不同而有明显的差异。随着系统压力増加,刻蚀速率增大,选择合适的刻蚀条件可以获得最大的刻恤速率。 频率主要是通过离子能量面影响到蚀速率。放电的工作电压障频率的降低而增加,因而离子的轰击能量在低频下将比高频下的高,又因为刻蚀速率与您轰击能量成正比,所以,在低频下能获得比较高的划蚀速率。 九、负载效应 在反应刻蚀的过程中,刻蚀的速率往往隲刻蚀面积的增大而减小,这种现象称为负载效应。当反应剂与剥蚀材料的反应迅速时,容易产生负戦效应。如果刻蚀是反应剂的主要损失机制,则刻蚀材料的表面积越大,反应剂的消耗速率就越快。活性物质的产生率由工艺参数(例如压力、功率、频率等)决定,与到蚀材料的多少无关、这样,反应刑的平衡浓度可由产生率和损失率之差决定,在反应离子刻蚀的过程中,刻蚀速率只与被刻蚀的面积成反比,刻蚀的速率R随被刻蚀的面积的増大而减小。这说明在一次刻蚀的过程中,需要刻蚀的硅片数目越多,由于反应原子和原子团的消耗,整体的刻蚀速率就越慢。若等离子体中反应刑的寿命很短,负载效应很小就可以忽略,反应剂的损失机构主要由刻蚀消耗所决定。 在集成电路工艺中,负载效应的出现,将影响图形尺寸的精确控制,因为,随着刻蚀到达终点,被腐材料的表面积迅速减小,此时的刻蚀速率就会比正常划蚀速率高得多,不但进行过刻蚀,而且也加速了倒向刻蚀,给条宽的控制造成困难。 从某种意义上说,负载效应是一种宏观过程,反应室中某个硅片的存在将影响另一硅片的刻蚀速率,这就意味着等离子体中反应剂的输运过程非常迅速,以致等离子体中的反应剂并不存在多大的浓度梯度。当然,被多打虫图形的尺寸和密度不同,也会影响刻蚀速率,这可能是由于反应速率不同,引起反应剂的局部浓度梯度而造成的。

在湿法腐蚀的过程中,通过使用特定的熔液与需要腐蚀的薄膜材料进行化学反应,进而除去没有被光刻胶覆盖区域的薄膜。 湿法腐蚀的优点是工艺简单,但是在湿法腐蚀中所进行的化学反应没有特定方向,所以会形成各向同性的腐蚀效果。各向同性是湿法腐蚀固有的特点,也可以说是湿法腐蚀的缺点。湿法腐蚀通常还会使位于光刻胶边缘下边的薄膜也被腐蚀,这也会使腐蚀后的线条宽度难以控制,选择合适的腐蚀速度,可以减小对光刻胶边缘下边薄膜的腐蚀。 在进行湿法腐蚀的过程中,熔液里的反应剂与被腐蚀薄膜的表面分子发生化学反应,生成各种反应产物。这些反应产物应该是气体,或者是能溶于腐蚀液中的物质。这样,这些反应产物就不会再沉积到被腐蚀的薄膜上。控制湿法腐蚀的主要参数包括:腐蚀溶液的浓度、腐蚀的时间、反应温度以及溶液的搅拌方式等。由于湿法腐蚀是通过化学反应实现的,所以腐蚀液的浓度越高,或者反应温度越高,薄膜被腐蚀的速率也就越快。此外,湿法腐蚀跌反应通常会伴有放热和放气。反应放热会造成局部反应温度的升高,使反应速度加快;反应速率加快又会加剧反应放热,使腐蚀反应处于不受控制的恶性循环中,其结果将导致腐蚀的图形不能满足要求。反应放气产生的气泡会隔绝局部的薄膜与腐蚀的接触,造成局部的反应停止,形成局部的缺陷。因此,在湿法腐蚀中需要进行搅拌。此外,适当的搅拌(例如使用超声波震荡),还可以在一定程度上减轻对光刻胶下方薄膜的腐蚀。 目前常用的湿法腐蚀的材料包括:Si,SiO2和Si2N4等,下面我们将对此进行简要讨论。 一、Si的湿法腐蚀 在湿法腐蚀Si的各种方法中,大多数都是采用强氧化剂对Si进行氧化,然后利用HF酸与SiO2反应来去除SiO2,从而达到对硅的腐蚀目的。最常用的腐蚀溶剂是硝酸与氢氟酸和水(或醋酸)的混合液,化学反应方程式为 Si+HNO3+6HF——H2SiF4+HNO2+H2O+H2 其中,反应生成的H2SiF4可溶于水。在腐蚀液中,水是作为稀释剂,但最好用醋酸(CH3COOH),因为醋酸可以抑制硝酸的分解,从而使硝酸的浓度维持在较高的水平。对于HF-HNO3混合的腐蚀液,当HF的浓度高而HNO3的浓度低时,Si膜腐蚀的速率由HNO3浓度决定(即Si的腐蚀速率基本上与HF浓度无关),因为这时有足量的HF去溶解反应中生成的SiO2.当HF的浓度低而HNO3浓度高时,Si腐蚀的速率取决于HF的浓度(即取决于HF溶解反应生成的SiO2的能力)。 对Si的湿法腐蚀还可以用KOH的水溶液与异丙醇(IPA)相混合来进行。对于金刚石或闪锌矿结构,(111)面的原子比(100)面排的更密,因而(111)面的腐蚀速度应该比(100)面的腐蚀速率小。 采用SiO2层作为掩膜对(100)晶向的硅表面进行腐蚀,可以得到V形的沟槽结构。如果SiO2上的图形窗口足够大,或者腐蚀的时间比较短,可以形成U形的沟槽。如果被腐蚀的是(110)晶向的硅片,则会形成基本为直壁的沟槽,沟槽的侧壁为(111)面。这样就可以利用腐蚀速率对晶体取向的依赖关系制得尺寸为亚微米的器件结构。不过,这种湿法腐蚀的方法大多采用在微机械元件的制造上,在传统的集成电路工艺中并不多见。 二、SiO2的湿法腐蚀 SiO2的湿法腐蚀可以使用氢氟酸(HF)作为腐蚀剂,其反应方程式为: SiO2+6HF——SiF4+2H2O+H2 在上述的反应过程中,HF不断被消耗,因此反应速率随时间的增加而降低。为了避免这种现象的发生,通常在腐蚀液中加入一定的氟化氨作为缓冲剂(形成的腐蚀液称为BHF)。氟化氨分解反应产生HF,从而维持HF的浓度。NH4F分解反应方程式为 NH4F——NH3+HF 分解反应产生的NH3以气态被排除掉。 在集成电路工艺中,除了需要对热氧化和CVD等方式得到的SiO2进行腐蚀外,还需要对磷硅玻璃(简称PSG)和硼磷硅玻璃(简称BPSG)等进行腐蚀。因为这些二氧化硅层的组成成分并不完全相同,所以HF对这些SiO2的腐蚀速率也就不完全一样。基本上以热氧化方式生成的二氧化硅层的腐蚀速率最慢。 三、Si3N4的湿法腐蚀 Si3N4也是一种常用湿法腐蚀的材料。Si3N4可以使用加热的磷酸(130-150度的H3PO4)来进行腐蚀。磷酸对Si3N4的腐蚀速率通常大于对SiO2的腐蚀速率。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/8914006.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-22
下一篇 2023-04-22

发表评论

登录后才能评论

评论列表(0条)

保存