一:经典自由电子理论
金属电子被束缚能较低,可以在金属中自由移动。所以加了电压就可以导电。 而半导体是以共价键形式存在,原子核对最外层电子的束缚较强,所以电子不可以随意移动。但是由于半导体是体材料,所以有好多的原子就在一起,那么他们的电子壳层就交叠在一起了。如图,那么电子就可以在这些交叠的轨道上运动了,于是也可以导电。
二:量子自由电子理论
这其实半导体和金属都是运用薛定谔的方程,再根据边界条件的值求解能量表达。他们的共同点是大都在纳米量级下才能观察到能量的量子化效应。比方说,普通金属在体材料即大块的时刻,有良好的导电导热性能,但是在纳米颗粒情况下就会绝缘。 半导体的量子化可以有量子阱,量子线,量子点等。这些情况下其能级发生分离,不再是连续的。
三:能带理论
这也是区别半导体和金属的比较易理解的方式。首先晶体中电子的分布要满足一定的波函数,而波函数也随这晶格周期性的变化。最终得到电子的分布空间是一些带。带和带之间时禁带,即不能存在电子。晶体能够导电是其中的电子在外电场的作用下做定向运动。电子在外电场下做加速运动,于是电子的能量就发生改变。从而电子从能量较低的带跃迁到高的带。半导体,就是能量较低的带里全部填充电子,能量高的带没有电子,因为满所以就好比大家在一起挤着不能动,那么就没有电流。但是有了外力,电子就跃迁,满的地方就空出位置,从而让旁边的电子移动,从而形成电流。金属的较高地方也有电子那么较高的能带上就有电子有空位(空穴),所以何时都能导电。
原理:
在极低温度下,半导体的价带是满带(见能带理论),受到热激发后,价带中的部分电子会越过禁带进入能量较高的空带,空带中存在电子后成为导带,价带中缺少一个电子后形成一个带正电的空位,称为空穴。空穴导电并不是实际运动,而是一种等效。
电子导电时等电量的空穴会沿其反方向运动。它们在外电场作用下产生定向运动而形成宏观电流,分别称为电子导电和空穴导电。这种由于电子-空穴对的产生而形成的混合型导电称为本征导电。导带中的电子会落入空穴,电子-空穴对消失,称为复合。
复合时释放出的能量变成电磁辐射(发光)或晶格的热振动能量(发热)。在一定温度下,电子- 空穴对的产生和复合同时存在并达到动态平衡,此时半导体具有一定的载流子密度,从而具有一定的电阻率。温度升高时,将产生更多的电子- 空穴对,载流子密度增加,电阻率减小。
扩展资料:
半导体的应用
一、在无线电收音机(Radio)及电视机(Television)中,作为“讯号放大器/整流器”用。
二、发展「太阳能(Solar Power)」,也用在「光电池(Solar Cell)」中。
三、半导体可以用来测量温度,测温范围可以达到生产、生活、医疗卫生、科研教学等应用的70%的领域,有较高的准确度和稳定性,分辨率可达0.1℃,甚至达到0.01℃也不是不可能,线性度0.2%,测温范围-100~+300℃,是性价比极高的一种测温元件。
四、半导体致冷器的发展, 它也叫热电致冷器或温差致冷器, 它采用了帕尔贴效应。
参考资料来源:百度百科-半导体
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)