例如,导电的金属在超微颗粒时可以变成绝缘体,磁距的大小与颗粒中电子是奇数还是偶数有关,比热亦会反常变化,光谱线会产生向短波长方向的移动,这就是量子效应的宏观表现。
什么是量子效应?这得从一些基本概念说起。原子模型与量子力学已经用能级的概念进行了合理的解释,由无数原子构成固体时,单独原子的能极就并合成能带,由于电子数目很多,能带中能极的间距很小,因此可看做是连续的。从能带理论出发,物理学家成功地解释了大块金属、半导体、绝缘体之间的联系和区别,对介于原子、分子与大块固体之间的超微颗粒而言,大块材料中连续的能带将分裂为分立的能极,能极间的间距随颗粒尺寸减少而增大。当热能、电场能或者磁场能比平均的能极间距还小时,就会呈现一系列与宏观物体截然不同的反常特性,这就是所谓的“量子效应”。例如,导电的金属在超微颗粒时可以变成绝缘体,磁距的大小与颗粒中电子是奇数还是偶数有关,比热亦会反常变化,光谱线会产生向短波长方向的移动,这就是量子效应的宏观表现。量子阱的基本特征是由于量子阱宽度(与电子的德布罗意波长可比的尺度)的限制,导致载流子波函数在一维方向上的局域化,量子阱中因为有源层的厚度仅在电子平均自由程内,阱壁具有很强的限制作用,使得载流子只在与阱壁平行的平面内具有二维自由度,在垂直方向,使得导带和价带分裂成子带。量子阱中的电子态、声子态和其他元激发过程以及它们之间的相互作用,与三维体状材料中的情况有很大差别。在具有二维自由度的量子阱中,电子和空穴的态密度与能量的关系为台阶形状。而不是象三维体材料那样的抛物线形状。20世纪90年代才在实验室制备出方势阱,即将一窄带隙半导体置于宽带隙半导体材料之间的结构,如典型的AlxGa1-xAs/GaAs/AlxGa1-xAs量子阱。高质量的量子阱样品都是用分子束外延或金属有机化学汽相沉积方法外延生长两种不同的材料而成的。除了方势阱,常见的量子阱结构还有半导体异质结构的三角势阱与抛物势阱。[1]
量子阱中电子(或空穴)沿外延生长方向的运动受到限制,可形成一系列分立的量子能级,电子(空穴)的波函数主要局域在量子阱中,称为量子限制效应。另一方面,在平行于量子阱界面的平面内,电子仍作准二维的自由运动。量子阱中每个分立能级对应于一个二维子带,电子态密度为常数。如果阱内存在几个分立能级,总的态密度包括所有子带的贡献,呈台阶状。方势阱中量子能级间的能量差大致与量子阱宽度的平方成反比,J.丁铎尔等首先在GaAs单量子阱的吸收光谱中观察到这种台阶形状的光谱线,并且台阶间的距离与量子阱的宽度平方成反比,从而实验上证实了量子阱的量子限制效应。[1]
量子限制效应使半导体量子阱呈现各种独特且具有广泛应用前景的电子学和光子学特性,并可通过改变材料结构、薄层厚度、掺杂和组分对这些特性实行调控。最主要的特性有:双势垒量子阱结构中的共振隧穿效应,激子二维特性和室温激光发射。[1]
应用
量子限制效应使量子阱中形成分立能级。在双势垒量子阱结构中,只有当发射极电子的能量与量子阱中能级相等且横向动量守恒时,共振隧穿才能发生。而进一步加大电场,使量子阱分立能级低于发射极带边,隧穿电流急剧减小,出现负微分电阻现象,这就是共振隧道二极管(RTD)的基本原理。RTD高峰-谷电流比的I-V特性曲线已应用于高频振荡器和高速逻辑电路等器件。[1]
量子阱中的激子也作准二维运动。由于量子限制效应,量子阱中的二维激子,其结合能接近半导体材料激子束缚能的4倍,使得在室温下就可能观察到由激子效应引起的强吸收峰或强荧光峰。这一特性加上量子阱中态密度的二维特性以及能带工程各种调控手段,可使量子阱激光器的阈值电流减小、发射波长可调、微分增益提高、特征温度等性能得到改善。半导体量子阱在其他光电器件中也得到了广泛的应用。[1]
分享你的世界
我要分享见解
,
点击发布
纠错
参考资料
[1] 词条作者:曾谨言.《中国大百科全书》74卷(第二版)物理学 词条:量子阱.中国大百科全书出版社.2009-07:326页
种牙降价啦!南京康贝佳口腔登腾种植牙费用公布拉!
康贝佳口腔登腾种牙价格广告
在南京遇到xyk/贷款逾期,我们帮您协商,不成功不收费!
xyk逾期解决中心广告
霍尔电流传感器价格应用尽在维博电子-实力厂商-产品高可靠
关注霍尔电流传感器的人也在看
维博电子专于电测 精于传感,专业研发生产高可靠高品质霍尔电流传感器价格/霍尔电流传感器价格,,拥有百余项专利及成果,远销国内外。
绵阳市维博电子广告
大家还在搜
量子阱激光器
量子点
霍尔效应
量子水
量子芯片
纳米
锗元素
量子电池
Hot
来YY,超多颜值主播,精彩视频看个够!
相关推荐
量子阱_相关词语
量子隧穿效应
一种衰减波耦合效应
查看词条
量子纠缠
量子力学现象
查看词条
量子计算机
量子算法的神奇世界
查看词条
光量子假说
爱因斯坦提出物理假说
查看词条
电子跃迁
吸收释放能量形式多样
查看词条
词条贡献者
该词条共有23人参与编辑,查看全部
词条有帮助,感谢贡献者
意见反馈权威合作百科协议
百度百科是免费编辑平台,无收费代编服务 | 详情
Baidu 京ICP证030173号
编辑
传视频
TA说
目录
在
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)