请教化工类产品的等级是按什么划分的

请教化工类产品的等级是按什么划分的,第1张

我国的试剂规格基本上按纯度(杂质含量的多少)划分,共有高纯、光谱纯、基准、分光纯、优级纯、分析和化学纯等7种。国家和主管部门颁布质量指标的主要优级纯、分级纯和化学纯3种。

(1)优级纯(GR:Guaranteed reagent),又称一级品或保证试剂,99.8%,这种试剂纯度最高,杂质含量最低,适合于重要精密的分析工作和科学研究工作,使用绿色瓶签。

(2)分析纯(AR),又称二级试剂,纯度很高,99.7%,略次于优级纯,适合于重要分析及一般研究工作,使用红色瓶签。

(3)化学纯(CP),又称三级试剂,≥ 99.5%,纯度与分析纯相差较大,适用于工矿、学校一般分析工作。使用蓝色(深蓝色)标签。

(4)实验试剂(LR:Laboratory reagent),又称四级试剂。

除了上述四个级别外,目前市场上尚有:

基准试剂(PT:Primary Reagent):专门作为基准物用,可直接配制标准溶液。

光谱纯试剂(SP:Spectrum pure):表示光谱纯净。但由于有机物在光谱上显示不出,所以有时主成分达不到99.9%以上,使用时必须注意,特别是作基准物时,必须进行标定。

纯度远高于优级纯的试剂叫做高纯试剂(≥ 99.99%)。高纯试剂是在通用试剂基础上发展起来的,它是为了专门的使用目的而用特殊方法生产的纯度最高的试剂。它的杂质含量要比优级试剂低2个、3个、4个或更多个数量级。因此,高纯试剂特别适用于一些痕量分析,而通常的优级纯试剂就达不到这种精密分析的要求。目前,除对少数产品制定国家标准外(如高纯硼酸、高纯冰乙酸、高纯氢氟酸等),大部分高纯试剂的质量标准还很不统一,在名称上有高纯、特纯(Extra Pure)、超纯、光谱纯等不同叫法。根据高纯试剂工业专用范围的不同,可将其分为以下几种:

⑴光学与电子学专用高纯化学品,即电子级试剂(EIectronicgrade)试剂。

⑵金属-氧化物-半导体(Metal-Oxide-Semiconductor)电子工业专用高纯化学品,即UP-S级或MOS试剂(读作:摩斯试剂)。一般用于半导体,电子管等方面,其杂质最高含量为0.01-10ppm,有的可降低到ppb数量级,金属杂质含量小于1ppb,尘埃等级达到0-2ppb,适合0.35—0.8微米集成电路加工工艺。

⑶单晶生产用高纯化学品。

⑷光导纤维用高纯化学品。

此外,还有仪分试剂、特纯试剂(杂质含量低于1/1000000~1/1000000000级)、特殊高纯度的有机材料等。

(5)等离子体质谱纯级试剂(ICP-Mass Pure Grade):绝大多数杂质元素含量低于0.1ppb,适合等离子体质谱仪(ICP Mass)日常分析工作。

(6)等离子体发射光谱纯级试剂(ICP Pure Grade):绝大多数杂质元素含量低于1ppb ,适合等离子体发射光谱仪(ICP)日常分析工作。

(7)原子吸收光谱纯级试剂(AA Pure Grade):绝大多数杂质元素含量低于10 ppb ,适合原子吸收光谱仪(AA)日常分析工作。

目前,国外试剂厂生产的化学试剂的规格趋向于按用途划分,常见的如下:

生化试剂 (BC:Biochemical)

生物试剂 (BR:Biological reagent)

生物染色剂 (BS:Biological Stain)

络合滴定用 (FCM:For Complexometry)

层析用0S-J1[ jB2~(F1v7G分析化学,论坛,化学分析,仪器分析,分析测试,色谱,电泳,光谱 (FCP:For chromatography purpose)

荧光分析(FIA)

微生物用(FMB)

显微镜用 (FMP:For microscopic purpose)

合成用-[6]#f!g6M#s.u5)]^www.33ge.com (FS:For synthesis)

气相色谱0S,~.L1t3k7`-{'E (GC:Gas chromatography)

高压液相色谱 (HPLC:High Pressure Liquid chromatography)

指示剂9K5R-}-s_9t分析化学,论坛,化学分析,仪器分析,分析测试,色谱,电泳,光谱 (Ind:Indicator)

红外吸收(IR)

液相色谱(LC)

核磁共振(NMR)

有机分析标准6a1Z2m:d*A7K+x分析化学论坛 (OSA:Organic analytical standard)

分析用(PA:Pro analysis)

实习用 (Pract: Practical use)

(\(T&e-Y5G-N%MPur (Pure purum 纯)

Puriss (Purissmum 特纯)

合成(SYN)

工业用Tech:Techincal grade)

薄层色谱(TLC:Thin Layer chromatography)

分光纯、光学纯、紫析分光光度纯$v7)(UV:Ultra violet pure)

例如德国伊默克公司生产的硝酸有13种规格:最低浓度为65%(密度约1.40)的特纯试剂硝酸双硫腙试验通过的最低浓度为65%(密度约1.40,Hg的最高浓度0.0000005%)的保证试剂(GR)硝酸、双硫腙试验通过的最低浓度为65%(密度约1.40)的保证试剂(GR)硝酸、最低浓度为65%(密度约1.40)的光学与电子学专用特纯(Selectipur)硝酸、100%(密度约1.52)的保证试剂(GR)硝酸、100%(密度约,1.42)的光学与电子学专用特纯(Seletipur)发烟硝酸、重氢度小于99%的重氢试剂硝酸-di(在D2O中,不小于65%DNO3)、滴定用0.1mo1/L硝酸溶液和滴定用1mo1/L硝酸溶液。伊默克公司还按用户的需要生产各种规格的试剂,如生化试剂、默克诊断试剂、医学研究、农业和环境监测试剂等等。

试剂规格按用途划分的优点简单明了,从规格即可知此试剂的用途,用户不必在使用哪一种纯度级和试剂上反复考虑。

附:国外试剂纯度级别说明

Ultra Pure:超纯,与GR级相近。

High Purity:高纯,与AR级相近。

Biotech:生物技术级,与BR级相近。

Reagent:试剂级,与CP级相近。

ACS:美国化学学会标准,与AR级相近。

USP:药用级

1.主频

主频也叫时钟频率,单位是MHz,用来表示CPU的运算速度。CPU的主频=外频×倍频系数。很多人认为主频就决定着CPU的运行速度,这不仅是个片面的,而且对于服务器来讲,这个认识也出现了偏差。至今,没有一条确定的公式能够实现主频和实际的运算速度两者之间的数值关系,即使是两大处理器厂家Intel和AMD,在这点上也存在着很大的争议,我们从Intel的产品的发展趋势,可以看出Intel很注重加强自身主频的发展。像其他的处理器厂家,有人曾经拿过一快1G的全美达来做比较,它的运行效率相当于2G的Intel处理器。

所以,CPU的主频与CPU实际的运算能力是没有直接关系的,主频表示在CPU内数字脉冲信号震荡的速度。在Intel的处理器产品中,我们也可以看到这样的例子:1 GHz Itanium芯片能够表现得差不多跟2.66 GHz Xeon/Opteron一样快,或是1.5 GHz Itanium 2大约跟4 GHz Xeon/Opteron一样快。CPU的运算速度还要看CPU的流水线的各方面的性能指标。

当然,主频和实际的运算速度是有关的,只能说主频仅仅是CPU性能表现的一个方面,而不代表CPU的整体性能。 www.jz5u.com

2.外频

外频是CPU的基准频率,单位也是MHz。CPU的外频决定着整块主板的运行速度。说白了,在台式机中,我们所说的超频,都是超CPU的外频(当然一般情况下,CPU的倍频都是被锁住的)相信这点是很好理解的。但对于服务器CPU来讲,超频是绝对不允许的。前面说到CPU决定着主板的运行速度,两者是同步运行的,如果把服务器CPU超频了,改变了外频,会产生异步运行,(台式机很多主板都支持异步运行)这样会造成整个服务器系统的不稳定。

目前的绝大部分电脑系统中外频也是内存与主板之间的同步运行的速度,在这种方式下,可以理解为CPU的外频直接与内存相连通,实现两者间的同步运行状态。外频与前端总线(FSB)频率很容易被混为一谈,下面的前端总线介绍我们谈谈两者的区别。

3.前端总线(FSB)频率

前端总线(FSB)频率(即总线频率)是直接影响CPU与内存直接数据交换速度。有一条公式可以计算,即数据带宽=(总线频率×数据带宽)/8,数据传输最大带宽取决于所有同时传输的数据的宽度和传输频率。比方,现在的支持64位的至强Nocona,前端总线是800MHz,按照公式,它的数据传输最大带宽是6.4GB/秒。 www.jz5u.com

外频与前端总线(FSB)频率的区别:前端总线的速度指的是数据传输的速度,外频是CPU与主板之间同步运行的速度。也就是说,100MHz外频特指数字脉冲信号在每秒钟震荡一千万次;而100MHz前端总线指的是每秒钟CPU可接受的数据传输量是100MHz×64bit÷8Byte/bit=800MB/s。

其实现在“HyperTransport”构架的出现,让这种实际意义上的前端总线(FSB)频率发生了变化。之前我们知道IA-32架构必须有三大重要的构件:内存控制器Hub (MCH) ,I/O控制器Hub和PCI Hub,像Intel很典型的芯片组 Intel 7501、Intel7505芯片组,为双至强处理器量身定做的,它们所包含的MCH为CPU提供了频率为533MHz的前端总线,配合DDR内存,前端总线带宽可达到4.3GB/秒。但随着处理器性能不断提高同时给系统架构带来了很多问题。而“HyperTransport”构架不但解决了问题,而且更有效地提高了总线带宽,比方AMD Opteron处理器,灵活的HyperTransport I/O总线体系结构让它整合了内存控制器,使处理器不通过系统总线传给芯片组而直接和内存交换数据。这样的话,前端总线(FSB)频率在AMD Opteron处理器就不知道从何谈起了。 www.jz5u.com

4、CPU的位和字长

位:在数字电路和电脑技术中采用二进制,代码只有“0”和“1”,其中无论是 “0”或是“1”在CPU中都是 一“位”。

字长:电脑技术中对CPU在单位时间内(同一时间)能一次处理的二进制数的位数叫字长。所以能处理字长为8位数据的CPU通常就叫8位的CPU。同理32位的CPU就能在单位时间内处理字长为32位的二进制数据。字节和字长的区别:由于常用的英文字符用8位二进制就可以表示,所以通常就将8位称为一个字节。字长的长度是不固定的,对于不同的CPU、字长的长度也不一样。8位的CPU一次只能处理一个字节,而32位的CPU一次就能处理4个字节,同理字长为64位的CPU一次可以处理8个字节。

5.倍频系数

倍频系数是指CPU主频与外频之间的相对比例关系。在相同的外频下,倍频越高CPU的频率也越高。但实际上,在相同外频的前提下,高倍频的CPU本身意义并不大。这是因为CPU与系统之间数据传输速度是有限的,一味追求高倍频而得到高主频的CPU就会出现明显的“瓶颈”效应—CPU从系统中得到数据的极限速度不能够满足CPU运算的速度。一般除了工程样版的Intel的CPU都是锁了倍频的,而AMD之前都没有锁。 www.jz5u.com

6.缓存

缓存大小也是CPU的重要指标之一,而且缓存的结构和大小对CPU速度的影响非常大,CPU内缓存的运行频率极高,一般是和处理器同频运作,工作效率远远大于系统内存和硬盘。实际工作时,CPU往往需要重复读取同样的数据块,而缓存容量的增大,可以大幅度提升CPU内部读取数据的命中率,而不用再到内存或者硬盘上寻找,以此提高系统性能。但是由于CPU芯片面积和成本的因素来考虑,缓存都很小。

L1 Cache(一级缓存)是CPU第一层高速缓存,分为数据缓存和指令缓存。内置的L1高速缓存的容量和结构对CPU的性能影响较大,不过高速缓冲存储器均由静态RAM组成,结构较复杂,在CPU管芯面积不能太大的情况下,L1级高速缓存的容量不可能做得太大。一般服务器CPU的L1缓存的容量通常在32—256KB。

L2 Cache(二级缓存)是CPU的第二层高速缓存,分内部和外部两种芯片。内部的芯片二级缓存运行速度与主频相同,而外部的二级缓存则只有主频的一半。L2高速缓存容量也会影响CPU的性能,原则是越大越好,现在家庭用CPU容量最大的是512KB,而服务器和工作站上用CPU的L2高速缓存更高达256-1MB,有的高达2MB或者3MB。

L3 Cache(三级缓存),分为两种,早期的是外置,现在的都是内置的。而它的实际作用即是,L3缓存的应用可以进一步降低内存延迟,同时提升大数据量计算时处理器的性能。降低内存延迟和提升大数据量计算能力对游戏都很有帮助。而在服务器领域增加L3缓存在性能方面仍然有显著的提升。比方具有较大L3缓存的配置利用物理内存会更有效,故它比较慢的磁盘I/O子系统可以处理更多的数据请求。具有较大L3缓存的处理器提供更有效的文件系统缓存行为及较短消息和处理器队列长度。 www.jz5u.com

其实最早的L3缓存被应用在AMD发布的K6-III处理器上,当时的L3缓存受限于制造工艺,并没有被集成进芯片内部,而是集成在主板上。在只能够和系统总线频率同步的L3缓存同主内存其实差不了多少。后来使用L3缓存的是英特尔为服务器市场所推出的Itanium处理器。接着就是P4EE和至强MP。Intel还打算推出一款9MB L3缓存的Itanium2处理器,和以后24MB L3缓存的双核心Itanium2处理器。

但基本上L3缓存对处理器的性能提高显得不是很重要,比方配备1MB L3缓存的Xeon MP处理器却仍然不是Opteron的对手,由此可见前端总线的增加,要比缓存增加带来更有效的性能提升。

7.CPU扩展指令集

CPU依靠指令来计算和控制系统,每款CPU在设计时就规定了一系列与其硬件电路相配合的指令系统。指令的强弱也是CPU的重要指标,指令集是提高微处理器效率的最有效工具之一。从现阶段的主流体系结构讲,指令集可分为复杂指令集和精简指令集两部分,而从具体运用看,如Intel的MMX(Multi Media Extended)、SSE、 SSE2(Streaming-Single instruction multiple data-Extensions 2)、SEE3和AMD的3DNow!等都是CPU的扩展指令集,分别增强了CPU的多媒体、图形图象和Internet等的处理能力。我们通常会把CPU的扩展指令集称为"CPU的指令集"。SSE3指令集也是目前规模最小的指令集,此前MMX包含有57条命令,SSE包含有50条命令,SSE2包含有144条命令,SSE3包含有13条命令。目前SSE3也是最先进的指令集,英特尔Prescott处理器已经支持SSE3指令集,AMD会在未来双核心处理器当中加入对SSE3指令集的支持,全美达的处理器也将支持这一指令集。 www.jz5u.com/2005

8.CPU内核和I/O工作电压

从586CPU开始,CPU的工作电压分为内核电压和I/O电压两种,通常CPU的核心电压小于等于I/O电压。其中内核电压的大小是根据CPU的生产工艺而定,一般制作工艺越小,内核工作电压越低;I/O电压一般都在1.6~5V。低电压能解决耗电过大和发热过高的问题。

9.制造工艺

制造工艺的微米是指IC内电路与电路之间的距离。制造工艺的趋势是向密集度愈高的方向发展。密度愈高的IC电路设计,意味着在同样大小面积的IC中,可以拥有密度更高、功能更复杂的电路设计。现在主要的180nm、130nm、90nm。最近官方已经表示有65nm的制造工艺了。

10.指令集 www.jz5u.com/qq

(1)CISC指令集

CISC指令集,也称为复杂指令集,英文名是CISC,(Complex Instruction Set Computer的缩写)。在CISC微处理器中,程序的各条指令是按顺序串行执行的,每条指令中的各个 *** 作也是按顺序串行执行的。顺序执行的优点是控制简单,但计算机各部分的利用率不高,执行速度慢。其实它是英特尔生产的x86系列(也就是IA-32架构)CPU及其兼容CPU,如AMD、VIA的。即使是现在新起的X86-64(也被成AMD64)都是属于CISC的范畴。

要知道什么是指令集还要从当今的X86架构的CPU说起。X86指令集是Intel为其第一块16位CPU(i8086)专门开发的,IBM1981年推出的世界第一台PC机中的CPU—i8088(i8086简化版)使用的也是X86指令,同时电脑中为提高浮点数据处理能力而增加了X87芯片,以后就将X86指令集和X87指令集统称为X86指令集。

虽然随着CPU技术的不断发展,Intel陆续研制出更新型的i80386、i80486直到过去的PII至强、PIII至强、Pentium 3,最后到今天的Pentium 4系列、至强(不包括至强Nocona),但为了保证电脑能继续运行以往开发的各类应用程序以保护和继承丰富的软件资源,所以Intel公司所生产的所有CPU仍然继续使用X86指令集,所以它的CPU仍属于X86系列。由于Intel X86系列及其兼容CPU(如AMD Athlon MP、)都使用X86指令集,所以就形成了今天庞大的X86系列及兼容CPU阵容。x86CPU目前主要有intel的服务器CPU和AMD的服务器CPU两类。

(2)RISC指令集

RISC是英文“Reduced Instruction Set Computing ” 的缩写,中文意思是“精简指令集”。它是在CISC指令系统基础上发展起来的,有人对CISC机进行测试表明,各种指令的使用频度相当悬殊,最常使用的是一些比较简单的指令,它们仅占指令总数的20%,但在程序中出现的频度却占80%。复杂的指令系统必然增加微处理器的复杂性,使处理器的研制时间长,成本高。并且复杂指令需要复杂的 *** 作,必然会降低计算机的速度。基于上述原因,20世纪80年代RISC型CPU诞生了,相对于CISC型CPU ,RISC型CPU不仅精简了指令系统,还采用了一种叫做“超标量和超流水线结构”,大大增加了并行处理能力。RISC指令集是高性能CPU的发展方向。它与传统的CISC(复杂指令集)相对。相比而言,RISC的指令格式统一,种类比较少,寻址方式也比复杂指令集少。当然处理速度就提高很多了。目前在中高档服务器中普遍采用这一指令系统的CPU,特别是高档服务器全都采用RISC指令系统的CPU。RISC指令系统更加适合高档服务器的 *** 作系统UNIX,现在Linux也属于类似UNIX的 *** 作系统。RISC型CPU与Intel和AMD的CPU在软件和硬件上都不兼容。 www.jz5u.com

目前,在中高档服务器中采用RISC指令的CPU主要有以下几类:PowerPC处理器、SPARC处理器、PA-RISC处理器、MIPS处理器、Alpha处理器。

(3)IA-64

EPIC(Explicitly Parallel Instruction Computers,精确并行指令计算机)是否是RISC和CISC体系的继承者的争论已经有很多,单以EPIC体系来说,它更像Intel的处理器迈向RISC体系的重要步骤。从理论上说,EPIC体系设计的CPU,在相同的主机配置下,处理Windows的应用软件比基于Unix下的应用软件要好得多。

Intel采用EPIC技术的服务器CPU是安腾Itanium(开发代号即Merced)。它是64位处理器,也是IA-64系列中的第一款。微软也已开发了代号为Win64的 *** 作系统,在软件上加以支持。在Intel采用了X86指令集之后,它又转而寻求更先进的64-bit微处理器,Intel这样做的原因是,它们想摆脱容量巨大的x86架构,从而引入精力充沛而又功能强大的指令集,于是采用EPIC指令集的IA-64架构便诞生了。IA-64 在很多方面来说,都比x86有了长足的进步。突破了传统IA32架构的许多限制,在数据的处理能力,系统的稳定性、安全性、可用性、可观理性等方面获得了突破性的提高。 www.jz5u.com

IA-64微处理器最大的缺陷是它们缺乏与x86的兼容,而Intel为了IA-64处理器能够更好地运行两个朝代的软件,它在IA-64处理器上(Itanium、Itanium2 ……)引入了x86-to-IA-64的解码器,这样就能够把x86指令翻译为IA-64指令。这个解码器并不是最有效率的解码器,也不是运行x86代码的最好途径(最好的途径是直接在x86处理器上运行x86代码),因此Itanium 和Itanium2在运行x86应用程序时候的性能非常糟糕。这也成为X86-64产生的根本原因。

(4)X86-64 (AMD64 / EM64T)

AMD公司设计,可以在同一时间内处理64位的整数运算,并兼容于X86-32架构。其中支持64位逻辑定址,同时提供转换为32位定址选项;但数据 *** 作指令默认为32位和8位,提供转换成64位和16位的选项;支持常规用途寄存器,如果是32位运算 *** 作,就要将结果扩展成完整的64位。这样,指令中有“直接执行”和“转换执行”的区别,其指令字段是8位或32位,可以避免字段过长。

x86-64(也叫AMD64)的产生也并非空穴来风,x86处理器的32bit寻址空间限制在4GB内存,而IA-64的处理器又不能兼容x86。AMD充分考虑顾客的需求,加强x86指令集的功能,使这套指令集可同时支持64位的运算模式,因此AMD把它们的结构称之为x86-64。在技术上AMD在x86-64架构中为了进行64位运算,AMD为其引入了新增了R8-R15通用寄存器作为原有X86处理器寄存器的扩充,但在而在32位环境下并不完全使用到这些寄存器。原来的寄存器诸如EAX、EBX也由32位扩张至64位。在SSE单元中新加入了8个新寄存器以提供对SSE2的支持。寄存器数量的增加将带来性能的提升。与此同时,为了同时支持32和64位代码及寄存器,x86-64架构允许处理器工作在以下两种模式:Long Mode(长模式)和Legacy Mode(遗传模式),Long模式又分为两种子模式(64bit模式和Compatibility mode兼容模式)。该标准已经被引进在AMD服务器处理器中的Opteron处理器。www.jz5u.com

而今年也推出了支持64位的EM64T技术,再还没被正式命为EM64T之前是IA32E,这是英特尔64位扩展技术的名字,用来区别X86指令集。Intel的EM64T支持64位sub-mode,和AMD的X86-64技术类似,采用64位的线性平面寻址,加入8个新的通用寄存器(GPRs),还增加8个寄存器支持SSE指令。与AMD相类似,Intel的64位技术将兼容IA32和IA32E,只有在运行64位 *** 作系统下的时候,才将会采用IA32E。IA32E将由2个sub-mode组成:64位sub-mode和32位sub-mode,同AMD64一样是向下兼容的。Intel的EM64T将完全兼容AMD的X86-64技术。现在Nocona处理器已经加入了一些64位技术,Intel的Pentium 4E处理器也支持64位技术。

应该说,这两者都是兼容x86指令集的64位微处理器架构,但EM64T与AMD64还是有一些不一样的地方,AMD64处理器中的NX位在Intel的处理器中将没有提供。

11.超流水线与超标量

在解释超流水线与超标量前,先了解流水线(pipeline)。流水线是Intel首次在486芯片中开始使用的。流水线的工作方式就象工业生产上的装配流水线。在CPU中由5—6个不同功能的电路单元组成一条指令处理流水线,然后将一条X86指令分成5—6步后再由这些电路单元分别执行,这样就能实现在一个CPU时钟周期完成一条指令,因此提高CPU的运算速度。经典奔腾每条整数流水线都分为四级流水,即指令预取、译码、执行、写回结果,浮点流水又分为八级流水。

超标量是通过内置多条流水线来同时执行多个处理器,其实质是以空间换取时间。而超流水线是通过细化流水、提高主频,使得在一个机器周期内完成一个甚至多个 *** 作,其实质是以时间换取空间。例如Pentium 4的流水线就长达20级。将流水线设计的步(级)越长,其完成一条指令的速度越快,因此才能适应工作主频更高的CPU。但是流水线过长也带来了一定副作用,很可能会出现主频较高的CPU实际运算速度较低的现象,Intel的奔腾4就出现了这种情况,虽然它的主频可以高达1.4G以上,但其运算性能却远远比不上AMD 1.2G的速龙甚至奔腾III。

12.封装形式

CPU封装是采用特定的材料将CPU芯片或CPU模块固化在其中以防损坏的保护措施,一般必须在封装后CPU才能交付用户使用。CPU的封装方式取决于CPU安装形式和器件集成设计,从大的分类来看通常采用Socket插座进行安装的CPU使用PGA(栅格阵列)方式封装,而采用Slot x槽安装的CPU则全部采用SEC(单边接插盒)的形式封装。现在还有PLGA(Plastic Land Grid Array)、OLGA(Organic Land Grid Array)等封装技术。由于市场竞争日益激烈,目前CPU封装技术的发展方向以节约成本为主。

13、多线程

同时多线程Simultaneous multithreading,简称SMT。SMT可通过复制处理器上的结构状态,让同一个处理器上的多个线程同步执行并共享处理器的执行资源,可最大限度地实现宽发射、乱序的超标量处理,提高处理器运算部件的利用率,缓和由于数据相关或Cache未命中带来的访问内存延时。当没有多个线程可用时,SMT处理器几乎和传统的宽发射超标量处理器一样。SMT最具吸引力的是只需小规模改变处理器核心的设计,几乎不用增加额外的成本就可以显著地提升效能。多线程技术则可以为高速的运算核心准备更多的待处理数据,减少运算核心的闲置时间。这对于桌面低端系统来说无疑十分具有吸引力。Intel从3.06GHz Pentium 4开始,所有处理器都将支持SMT技术。 www.jz5u.com

14、多核心

多核心,也指单芯片多处理器(Chip multiprocessors,简称CMP)。CMP是由美国斯坦福大学提出的,其思想是将大规模并行处理器中的SMP(对称多处理器)集成到同一芯片内,各个处理器并行执行不同的进程。与CMP比较, SMT处理器结构的灵活性比较突出。但是,当半导体工艺进入0.18微米以后,线延时已经超过了门延迟,要求微处理器的设计通过划分许多规模更小、局部性更好的基本单元结构来进行。相比之下,由于CMP结构已经被划分成多个处理器核来设计,每个核都比较简单,有利于优化设计,因此更有发展前途。目前,IBM 的Power 4芯片和Sun的 MAJC5200芯片都采用了CMP结构。多核处理器可以在处理器内部共享缓存,提高缓存利用率,同时简化多处理器系统设计的复杂度。

2005年下半年,Intel和AMD的新型处理器也将融入CMP结构。新安腾处理器开发代码为Montecito,采用双核心设计,拥有最少18MB片内缓存,采取90nm工艺制造,它的设计绝对称得上是对当今芯片业的挑战。它的每个单独的核心都拥有独立的L1,L2和L3 cache,包含大约10亿支晶体管。

15、SMP

SMP(Symmetric Multi-Processing),对称多处理结构的简称,是指在一个计算机上汇集了一组处理器(多CPU),各CPU之间共享内存子系统以及总线结构。在这种技术的支持下,一个服务器系统可以同时运行多个处理器,并共享内存和其他的主机资源。像双至强,也就是我们所说的二路,这是在对称处理器系统中最常见的一种(至强MP可以支持到四路,AMD Opteron可以支持1-8路)。也有少数是16路的。但是一般来讲,SMP结构的机器可扩展性较差,很难做到100个以上多处理器,常规的一般是8个到16个,不过这对于多数的用户来说已经够用了。在高性能服务器和工作站级主板架构中最为常见,像UNIX服务器可支持最多256个CPU的系统。

构建一套SMP系统的必要条件是:支持SMP的硬件包括主板和CPU;支持SMP的系统平台,再就是支持SMP的应用软件。

为了能够使得SMP系统发挥高效的性能, *** 作系统必须支持SMP系统,如WINNT、LINUX、以及UNIX等等32位 *** 作系统。即能够进行多任务和多线程处理。多任务是指 *** 作系统能够在同一时间让不同的CPU完成不同的任务;多线程是指 *** 作系统能够使得不同的CPU并行的完成同一个任务。 www.jz5u.com

要组建SMP系统,对所选的CPU有很高的要求,首先、CPU内部必须内置APIC(Advanced Programmable Interrupt Controllers)单元。Intel 多处理规范的核心就是高级可编程中断控制器(Advanced Programmable Interrupt Controllers--APICs)的使用;再次,相同的产品型号,同样类型的CPU核心,完全相同的运行频率;最后,尽可能保持相同的产品序列编号,因为两个生产批次的CPU作为双处理器运行的时候,有可能会发生一颗CPU负担过高,而另一颗负担很少的情况,无法发挥最大性能,更糟糕的是可能导致死机。

16、NUMA技术

NUMA即非一致访问分布共享存储技术,它是由若干通过高速专用网络连接起来的独立节点构成的系统,各个节点可以是单个的CPU或是SMP系统。在NUMA中,Cache 的一致性有多种解决方案,需要 *** 作系统和特殊软件的支持。图2中是Sequent公司NUMA系统的例子。这里有3个SMP模块用高速专用网络联起来,组成一个节点,每个节点可以有12个CPU。像Sequent的系统最多可以达到64个CPU甚至256个CPU。显然,这是在SMP的基础上,再用NUMA的技术加以扩展,是这两种技术的结合。

17、乱序执行技术

乱序执行(out-of-orderexecution),是指CPU允许将多条指令不按程序规定的顺序分开发送给各相应电路单元处理的技术。这样将根据个电路单元的状态和各指令能否提前执行的具体情况分析后,将能提前执行的指令立即发送给相应电路单元执行,在这期间不按规定顺序执行指令,然后由重新排列单元将各执行单元结果按指令顺序重新排列。采用乱序执行技术的目的是为了使CPU内部电路满负荷运转并相应提高了CPU的运行程序的速度。分枝技术:(branch)指令进行运算时需要等待结果,一般无条件分枝只需要按指令顺序执行,而条件分枝必须根据处理后的结果,再决定是否按原先顺序进行。

18、CPU内部的内存控制器

许多应用程序拥有更为复杂的读取模式(几乎是随机地,特别是当cache hit不可预测的时候),并且没有有效地利用带宽。典型的这类应用程序就是业务处理软件,即使拥有如乱序执行(out of order execution)这样的CPU特性,也会受内存延迟的限制。这样CPU必须得等到运算所需数据被除数装载完成才能执行指令(无论这些数据来自CPU cache还是主内存系统)。当前低段系统的内存延迟大约是120-150ns,而CPU速度则达到了3GHz以上,一次单独的内存请求可能会浪费200-300次CPU循环。即使在缓存命中率(cache hit rate)达到99%的情况下,CPU也可能会花50%的时间来等待内存请求的结束- 比如因为内存延迟的缘故。

你可以看到Opteron整合的内存控制器,它的延迟,与芯片组支持双通道DDR内存控制器的延迟相比来说,是要低很多的。英特尔也按照计划的那样在处理器内部整合内存控制器,这样导致北桥芯片将变得不那么重要。但改变了处理器访问主存的方式,有助于提高带宽、降低内存延时和提升处理器性能。

初学者常对Pentium 4处理器编号后的A/B/C/E等后缀备感困惑。其实,这些后缀是Intel针对相同主频,但拥有不同核心的处理器而设定,以方便大家辨认。例如频率为2.4GHz的Pentium 4拥有众多后缀,包括Pentium 4 2.4A/B/C/E等。对此,只需通过Intel的“简单编号”便可方便地加以分辨。

在绝大多数情况下,“A”代表Northwood核心且具有400MHz FSB的Pentium 4处理器,以此区别早期同频的Willamette核心的Pentium 4。具体到处理器表面编号,可通过“简单编号”中的“512K/400”确认,而相应Willamette则是“256K/400”。

“B”则代表533MHz FSB的Northwood核心Pentium 4处理器,表现在编号上可通过“512K/533”与“A”的“512K/400”相区别。

“C”便是800MHz FSB的Northwood Pentium 4处理器,其编号为“512K/800”。

“E”则是最新的基于Socket 478芄沟腜rescott核心Pentium 4处理器,由于具备1MB二级缓存,其编号表示为“1M/800”。

请留意部分例外,Prescott核心处理器有两款也采用“A”标识,分别是2.4A和2.8A,它们不支持超线程且都是533MHz FSB,标识为“1M/533”。

通过以上方法将后缀与编号相联系,我们便能知晓主流Pentium 4共有“256K/400”(无后缀)、“512K/400”(A)、“512K/533”(B)、“512K/800”(C)、“1M/533”(A)和“1M/800”(E)六种,区分清晰明了。

● 留意Northwood的步进

销量最大的Northwood核心Pentium 4包括了前文提到的A/B/C三大系列。在同频下,性能由高至低为C→B→A。不过即便同为“C”,还得注意处理器的步进值。通常Northwood核心有三种步进:B0、C1和D1。通常的做法是选择靠后的步进,即D1。D1步进通常拥有多种核心电压(Intel在逐步降低功耗),这类处理器在“简单编号”中一般不会标识核心电压,可查看S-Spec编号获知。由于S-Spec编号无规律可循,文末列出了主流频率的Northwood处理器的S-Spec值及相应步进,以供参考。

● 后缀J和E0步进的含义

Intel宣称,后缀J代表处理器支持硬件防病毒功能(该功能与Athlon 64类似,在安装WinXP SP2后可在 *** 作系统中打开)。据了解,Intel新推出的E0制程的Prescott都应支持该功能。此外,E0制程还具备加强的温度控制功能。但笔者注意到,并非所有的E0步进Prescott处理器都会标注后缀J。另外,在Socket 478处理器中,我们也发现了E0制程的Prescott核心存在,但这类处理器肯定不会标注后缀J。反过来讲,后缀J的处理器是否支持加强的温度控制功能呢?官方表示不支持。但笔者认为并不排除Intel人为屏蔽该功能的可能性,所以挑选一块E0制程的Prescott是更聪明的做法。

如何判断是否为E0制程呢?还得依靠S-Spec值。因为从缓存和FSB无法看出E0与其它制程的区别。从Intel官方处理器编号列表可以发现E0步进处理器的S-Spec包括:

Socket 478平台:SL7PL、SL7PK、SL7PM、SL7PN、SL7PP和SL7KD;LGA 775平台:SL7PT、SL82V、SL7PR、SL85V、SL87L、SL82X、SL7PU、SL7PW、SL7PX、SL82Z、SL7PY、SL7PZ、SL833、SL84X、SL7Q2、SL7NZ、SL82U、SL84Y和SL72P。

Prescott非常混乱,一定要小心!

● 后缀F和后缀P的Pentium 4

后缀F代表支持EM64T,即Intel的64位扩展。借助S-Spec编号可发现从D0步进的Pentium 4开始便有支持EMT64的型号。在D0步进中,SL7LA、SL7L8和SL7L9可支持EM64T,即Pentium 4 F。而新的E0步进中,SL7PX、SL7PZ、SL7NZ和SL72P可支持EM64T。后缀P的产品代表支持硬件防病毒、EM64T和加强的温度控制功能,并且具有2MB二级缓存。细心的读者会发现这是Intel新的6XX系列处理器。笔者个人认为只要是E0内核的处理器,除了二级缓存大小外,都应具备这三个功能。只是Intel为了区分6xx和5xx系列人为控制了P4J不具备EM64T和加强的温度控制功能。这里笔者再次强调选择E0步进的Prescott,以后极可能通过升级BIOS打开这些功能。

● 混乱的Prescott处理器

Northwood处理器虽然有A/B/C的差别,但很好辨认。处理器步进虽有B0/C1/D1/M0几种,但市面销售的通常为D1步进,选购时只要根据上文方法稍解辨别一般不会混淆。但Prescott则比较混乱,仅“1M/800”的Prescott便有E/J/F/P多种后缀。另外,除去大家熟悉的是否支持超线程、EM64T和硬件防病毒外,还有几种不太了解的区别。

首先是电源规范的区别:FMB1.5和FMB1.0(仅限Socket 478的Prescott),这也得通过S-Spec了解;其次是最大功耗:04A与04B(仅限LGA 775)。在最新的LGA 755产品线中,Intel制订了两种功耗方案,04A为主流方案,功耗较小,性能稍差;04B则称为高性能方案,功耗大,性能强劲。Intel直接在处理器包装盒写明了是04A还是04B,以便于区分。当然,通过S-Spec区别更为准确。

综上所述,Prescott处理器的区别一定要凭S-Spec对号入座,文末详细列出已知的Prescott处理器S-Spec号,供大家参考。

● 留意Celeron D的步进

Celeron D包括C0/D0/E0三种步进,D0步进的Celeron D 315或320在市场上最受青睐。新的E0步进LGA 775 Celeron D被称为Celeron D J,支持硬件防病毒。选择Celeron D仍要参考S-Spec。例如,Celeron D 315属该系列倍频最低者,具有较强的超频能力,又包括多种步进的产品,如SL7XG是C0步进、SL7XY/SL7WS是D0步进、SL8AW/SL87K是E0步进,E0步进才是首选。其他型号可参考文末列表。

至此,笔者已全面地分析了当前市场上(包括二手市场)能买到的各类Intel和AMD处理器编号问题,弄清这些编号的区别意味着您将成为处理器辨别的行家。此外,全面认识处理器编号的另一重大意义在于通过步进值寻找更易超频的处理器。下面笔者列出市场上常见处理器的编号,Intel产品列出S-Spec,AMD产品列出OPN编号。

表1:Intel Northwood S-Spec

笔者每个主频挑选不同步进的S-Spec各一个供参考。其它的可在http://processorfinder.intel.com查询,或在Intel官方文档区http://support.intel.com/design/Pentium4/documentation.htm下载Specification Update文档查找。

处理器名称 S-Spec 步进 核心电压

1.6GHz P4A SL668 B0 1.5

1.8GHz P4A SL63X B0 1.5

SL6QL C1 1.475~1.525

SL6PQ D1 多电压

2.0GHz P4A SL5YR B0 1.5

SL6E7 C1 1.525

SL6PK D1 多电压

2.2GHz P4A SL5YS B0 1.5

SL6E8 C1 1.525

SL6QN D1 多电压

2.26GHz P4B SL67Y B0 1.5

SL6RY C1 1.53

SL6PB D1 1.525(多电压)

2.4GHz P4A SL65R B0 1.5

SL6S9 C1 多电压

SL6QP D1 多电压

2.4GHz P4B SL67Z B0 1.5

SL6RZ C1 1.53(多电压)

SL6PC D1 1.525(多电压)

2.4GHz P4C SL6WR D1 多电压

2.5GHz P4A SL6EB C1 1.525

SL6QQ D1 多电压

2.53GHz P4B SL682 B0 1.5

SL6DW C1 1.525

SL6PD D1 1.525(多电压)

2.6GHz P4A SL6GU C1 1.5

SL6QR D1 多电压

2.6GHz P4C SL6WH D1 多电压

2.66GHz P4B SL6DX C1 1.525

SL6QA D1 1.53(多电压)

2.8GHz P4A SL7EY D1 1.475~1.55

2.8GHz P4B SL6HL C1 1.525

SL6K6 C1 1.525

SL6QB D1 1.53(多电压)

2.8GHz P4C SL6WJ D1 多电压

3.0GHz P4C SL6WK D1 多电压

3.06GHz P4B SL6JJ C1 1.525

SL6PG D1 1.55(多电压)

3.2GHz P4C SL6WE D1 1.25~1.4

3.4GHz P4C SL7AJ C0(1MB L2)1.25~1.4

SL793 D1 1.25~1.4

Intel Celeron D篇

表2:Intel Celeron D S-Spec

Celeron D虽然型号不多,但存在C0、D0和E0步进。目前国内市场仍有很多C0步进产品,尤其是盒装产品。如果想超频,建议选择散装D0或E0产品。

处理器名称 S-Spec 步进 接口

Celeron D 315 SL7XG C0 Socket 478

SL7WS D0 Socket 478

SL8AW E0 Socket 478

Celeron D 320 SL7C4 C0 Socket 478

SL7JV D0 Socket 478

SL87J E0 Socket 478

SL7VQ E0 LGA 775

Celeron D 325 SL7C5 C0 Socket 478

SL7SS D0 Socket 478

SL7NU E0 Socket 478

SL7VR E0 LGA 775

Celeron D 330 SL7C6 C0 Socket 478

SL7ST D0 Socket 478

SL7NV E0 Socket 478

SL7VS E0 LGA 775

Celeron D 335 SL7C7 C0 Socket 478

SL7Q9 D0 Socket 478

SL7NW E0 Socket 478

SL7VT E0 LGA 775

Celeron D 340 SL7Q9 D0 Socket 478

SL7TS E0 Socket 478

SL7VV E0 LGA 775

Celeron D 345 SL7DN D0 Socket 478

SLYW3 E0 Socket 478

SL7TQ E0 LGA 775

Intel Prescott篇

表3:Intel Prescott S-Spec

Prescott情况较复杂,笔者尽量将已知的S-Spec列出。要说明的是Socket 478产品(表内用S代表)未列功耗,LGA 775产品(表内用L代表)无电源规范项。

处理器名称 S-Spec 步进 EM64T 电源规范 超线程 功耗 接口

2.26GHz P4A SL7D7(512K L2) C0 否 FMB 1.0 否 N/A S

2.4GHz P4A SL7E8 C0 否 FMB 1.0 否 N/A S

SL7YP D0 否 FMB 1.0 是 N/A S

2.4GHz P4E SL7FY C0 否 FMB 1.0 是 N/A S

2.66GHz P4A SL7PT E0 否 N/A 否 04A L

2.8GHz P4A SL7D8 C0 否 FMB 1.0 否 N/A S

SL7E2 D0 否 FMB 1.0 否 N/A S

SL7K9 D0 否 FMB 1.0 未知 N/A S

SL7PK E0 否 FMB 1.0 否 N/A S

SL7J4 D0 否 N/A 是 N/A L

SL7KH D0 否 N/A 未知 04A L

2.8GHz P4E SL79K C0 否 FMB1.0 是 N/A S

SL7E3 D0 否 FMB 1.0 是 N/A S

SL7KA D0 否 FMB 1.0 是 N/A S

SL7PL E0 否 FMB 1.0 是 N/A S

SL7J5 D0 否 N/A 是 04A L

SL7KJ D0 否 N/A 是 04A L

SL82V E0 否 N/A 是 04A L

SL7PR E0 否 N/A 是 04A L

2.93GHz P4A SL85V E0 否 N/A 否 04A L

3.0GHz P4E SL79L C0 否 FMB 1.0 是 N/A S

SL7L4 D0 否 FMB 1.0 是 N/A S

SL7E4 D0 否 FMB 1.0 是 N/A S

SL7KB D0 否 FMB 1.0 是 N/A S

SL7PM E0 否 FMB 1.0 是 N/A S

SL7J6 D0 否 N/A 是 04A L

SL7KK D0 否 N/A 是 04A L

SL82X E0 否 N/A 是 04A L

SL7PU E0 否 N/A 是 04A L

3.06GHz P4A SL87L E0 否 N/A 否 04A L

3.2GHz P4E SL7B8 C0 否 FMB 1.5 是 N/A S

SL7L5 D0 否 FMB 1.0 是 N/A S

SL7E5 D0 否 FMB 1.0 是 N/A S

SL7KC D0 否 FMB 1.0 是 N/A S

SL7J7 D0 否 N/A 是 04A L

SL7KL D0 否 N/A 是 04A L

SL7LA D0 是 N/A 是 04A L

SL7PN E0 否 FMB 1.0 是 N/A S

SL7PW E0 否 N/A 是 04A L

SL7PX E0 是 N/A 是 04A L

SL82Z E0 否 N/A 是 04A L

3.4GHz P4E SL7B9 C0 否 FMB 1.0 是 N/A S

SL7E6 D0 否 FMB 1.5 是 N/A S

SL7KM D0 否 N/A 是 04B L

SL7L8 D0 是 N/A 是 04B L

SL7J8 D0 否 N/A 是 04B L

SL7PP E0 否 FMB 1.0 是 N/A S

SL7KD E0 否 FMB 1.5 是 N/A S

SL7PY E0 否 N/A 是 04A L

SL7PZ E0 是 N/A 是 04A L

SL833 E0 否 N/A 是 04A L

3.6GHz P4E SL7J9 D0 否 N/A 是 04B L

SL7KN D0 否 N/A 是 04B L

SL7L9 D0 是 N/A 是 04B L

SL84X E0 否 N/A 是 04B L

SL7Q2 E0 否 N/A 是 04B L

SL7NZ E0 是 N/A 是 04B L

3.8GHz P4E SL82U E0 否 N/A 是 04B L

SL84Y E0 否 N/A 是 04B L

SL72P E0 是 N/A 是 04B L

每块处理器都有一个能反映主频、前端总线频率、二级缓存、工作电压等参数的编号。读懂这一编号除可认识处理器外,实际选购时还能在一定程度防止假货。

一、处理器编号揭秘

1.Intel处理器篇

当前市场上的Intel处理器主要包括Pentium 4和Celeron D两大系列,基于Northwood核心的老Celeron正趋于淘汰。这些处理器表面都覆有金属散热盖,处理器的编号便在其上。

一款Pentium 4处理器表面的编号

注:所有Intel处理器的标识大同小异,即便偶有调整,也只是排列顺序微调,但基本信息仍然不变。

从上图可看到,第一行标识为处理器基本参数,以“主频/二级缓存/前端总线频率/电压(有的未标识电压)”形式表示(本文称之为“简单编号”)。这一行信息对初级用户了解处理器基本参数尤其有用。

第二行则是S-Spec与产地,S-Spec蕴含了Intel处理器更多的秘密。这个五位编号可全面了解主频、二级缓存、FSB频率、核心电压、温度以及处理器步进值等信息。虽然S-Spec的含义无法直接看出,但它是选择Intel处理器的最有用工具,笔者将在后文详细介绍,并在文末列出常见Intel处理器S-Spec供参考。紧随S-Spec后的是处理器产地,常见的有马来西亚、哥斯达黎加和中国等。

第三行为FPO和序列号,这是每块处理器唯一的出厂编号。购买盒装处理器的消费者需留意外包装上的FPO号与处理器是否一致,并可通过Intel 800电话确认是否为真正盒装产品。

1958年,美国德克萨斯州仪器公司的工程师基尔比(Jack Kilby)在一块半导体硅晶片上将电阻、电容等分立元件集成在里面,制成世界上第一片集成电路。也正因为这件事,2000年的诺贝尔物理奖颁发给了已退休的基尔比。1959年,美国仙童公司的诺伊斯用一种平面工艺制成半导体集成电路,从此开启了集成电路比黄金还诱人的时代。其后,摩尔、诺宜斯、葛洛夫这三个“伙伴”离开原来的仙童公司,一起开创事业——筹建一家他们自已的公司。三人一致认为,最有发展潜力的半导体市场是计算机存储器芯片市场。吸引他们成立新公司的另一个重要原因是:这一市场几乎完全依赖于高新技术,你可以尽可能地在一个芯片上放最多的电路,谁的集成度高,谁就能成为这一行业的领袖。基于以上考虑,摩尔为新公司命名为:Intel,这个字是由“集成/电子(Integrated Electronics)"两个英文单词组合成的,象征新公司将在集成电路市场上飞黄腾达,结果就真的如此,看来在摩尔有生之年,请他起个名字一定发达。

当时,这三位创业者说服风险资本家阿瑟.罗克给他们投资了200万美元;还找到了他们创业的最佳地点,就是原联合碳化物电子公司的大楼,这可比惠普的车库要强多了。公司创建不久,三位创建人就与公司职员(这时是1968年底,英特尔公司已约定,他们将不拘泥于任何特定的技术或产品生产线,用诺宜斯的话来说就是“对当今所有技术进行快镜拍摄,从中发现哪种技术行得通,哪种技术最卓有成效,就开发哪种技术”,公司有的是时间、才能和资金,所以他们不能草率行事。诺宜斯说:“没能任何合同规定我们必须保证某一生产线的生产。我们也不受任何旧技术的约束。”

英特尔公司发现:当电子在集成电路块的细微部位上出现或消失时,可以将若干比特(bites,资料的最小计量单位)信息非常廉价地储存在微型集成电路硅片上,他们首先将这种发现应用在商业上。1969年的春天,在公司成立一周年以后,英特尔公司生产了第一批产品,即双极处理64比特存储芯片。不久,公司又推出256比特的MOS存储器芯片。一个小小的Intel公司,以它的两种新产品的问世而打入了整个计算机存储器市场——这是一个辉煌的开端,而其他的一些公司直到1980年才能生产MOS芯片和双极芯片。

随着日本公司加入竞争,内存的生意越来越艰难。尽管当时有很多美国人抱怨日本人公司以低于成本的价格向美国倾销产品,但一个不可否认的事实是,日本在芯片制造上的速度和质量是无与伦比的。这时候,英特尔公司面对有史以来最大的生存危机。不过最终他们作出一个令人钦佩的决断:放弃内存,全力投入微处理器业务。

说到微处理器业务,其实最初是件很偶然的事情:英特尔的一家客户(Busicom,一家现已不存在的日本厂商)要求英特尔为其专门设计一些处理芯片。在研究过程中,英特尔的研究员霍夫(Hoff)问自已:对于集成电路,能否在外部软件的 *** 纵下以简单的指令进行复杂的工作呢?为什么不可将这个计算机上的所有逻辑集成到一个芯片上并在上面编制简单通用的程序呢?这其实就是今天所有微处理器的原理。但日本公司对此毫无兴趣。在同事的帮助及公司支持下,霍夫把中央处理器的全部功能集成在一块芯片上,再加上存储器;完善了这种后来被称为4004的芯片,也就是世界上第一片微处理器。

1971年英特尔诞生了第一个微处理器——4004。该芯片其实是为Busicom calculator专门设计制造的,但已经可以看到个人电脑的影子在里面了。据说当时有一位留着长发的美国人在无线电杂志上读到I4004的消息,立即就想能用这个CPU来开发个人使用的 *** 作系统。结果经过一番仔细折腾之后,发现I4004的功能实在是太弱,而他想实现的系统功能与Basic语言并不能在上面实现只好作罢,这个人就是比尔.盖茨——微软公司的老板。不过从此之后,他对英特尔的动向非常关注,终于在1975年成就了微软公司(Microsoft Corporation)

接下来到了8008,8008的运算能力比4004强劲2倍。1974年,一本无线电杂志刊登了一种使用8008作处理器的机器,叫做“Mark-8(马克八号)”,这也是目前已知的最早的家用电脑了。虽然从今天的角度看来,“Mark-8”非常难以使用、控制、编程及维护,但是这在当时却是一种伟大的发明。

下一代产品叫做8080,8080被用于当时一种品牌为Altair(牵牛星,这个名字来源于当时电视节目里一个流行的科幻剧)的电脑上。这也是有史以来第一个知名的个人电脑。当时这种电脑的套件售价是395美金,短短数月的时间里面,销售业绩达到了数万部,创造了个人电脑销售历史的一个里程碑。

4004的集成度只有2300个晶体管,功能其实比较弱,且计算速度较慢,以致只能用在Busicom计算器上,更不用说进行复杂的数学计算了。不过比起第一台电子计算机ENIAC来说,它已经轻巧太多太多了。而且最大的历史意义是,它是第一个通用型处理器,这在当时专用集成电路设计横行的时代是难得的突破。所谓专用集成电路设,就是为不同的应用设计独特的产品,一旦应用条件变化,就需要重新设计;当然在商业盈利上,对设计公司是很有好处的。但是英特尔公司的目光并没有这么短浅,霍夫做出大胆的设想:使用通用的硬件设计加上外部软件支持来完成不同的应用,这就是最初的通用微处理器的设想。

英特尔公司很快对这个设想进行了论证,发现确实可行,而且这种产品的好处就在于采用不同的软件支持就能完成不同的工作,这比重新设计专用的集成电路要简单得多。看到这种产品将来的广阔前景,英特尔公司马上投入了设计工作并很快推出了产品——世界上第一块微处理器Intel 4004。

其实4004处理只能处理4位数据,但内部指令是8位的。4004拥有46条指令,采用16针直插式封装。数据内存和程序内存分开,1K数据内存,4K程序内存。运行时钟频率预计为1M,最终实现达到了740kHz,能进行二进制编码的十进制数学运算。这款处理器很快得到了整个业界的承认,蓝色巨人IBM还将4004装备在IBM 1620机器上。

在4004发布后不久,英特尔连续的发布了几款CPU:4040、8008,但市场反响平平,不过却为开发8位微处理器打下了良好基础。1974年,英特尔公司又在8008的基础上研制出了8080处理器、拥有16位地址总线和8位数据总线,包含7个8位寄存器(A,B,C,D,E,F,G,其中BC,DE,HL组合可组成16位数据寄存器),支持16位内存,同时它也包含一些输入输出端口,这是一个相当成功的设计,还有效解决了外部设备在内存寻址能力不足的问题。

1978年,8086处理器诞生了。这个处理器标志着x86王朝的开始,为什么要纪念英特尔x86架构25周年?主要原因是从8086开始,才有了目前应用最广泛的PC行业基础。虽然从1971年,英特尔制造4004至今,已经有32年历史;但是从没有像8086这样影响深远的神来之作。

还有一个更关键的因素,是时IBM研究新的PC机来打击苹果的个人电脑。IBM公司需要选择一款强大,易于扩展的处理器来驱动,英特尔的x86处理器取得了绝对的胜利,成为IBM PC的新“大脑”。这个历史的选择也将英特尔公司日后带入了财富500强大公司的行列,并被财富杂志称之为:“七十大商业奇迹之一(Business Triumphs of the Seventies)”

IBM公司的PC大获成功,不但带旺了英特尔的生意,还造就了另外一个商业奇迹——微软公司。比尔.盖茨搭车销售了DOS *** 作系统,为今天称霸软件行业攫取了第一桶金。不但如此,因为IBM公司的远见,开放了PC架构的授权,康柏(今天已经变成HP的一部分)等第三方的制造商也大获其利。甚至台湾等经济的腾飞都与这次历史的联合有着必然的联系,无论从历史,还是产业的眼光来阅读,这个事件都非常值得称颂!

事实上,IBM在PC XT选用的是8088这个型号。以技术的观点来看,8088其实是8086的一个简版,其内部指令是16位的,但是外部是8位数据总线;相对于8086内部数据总线(CPU内部传输数据的总线)、外部数据总线(CPU外部传输数据的总线)均为16位,地址总线为20位,可寻址1MB内存的规格来说,是稍差了一点,但是已经足以胜任DOS系统和当时的应用程序了。8086集成2.9万只晶体管,时钟频率为4.77MHz,同时还生产出与之配合的数学协处理器8087,这两种芯片使用相同的指令集,可以互相配合提升科学运算的效率。

当然现在的CPU都内建数学协处理器,因此不再需要额外的数学协处理器芯片,但是七十年代的技术限制,一般只能将数学协处理器做成另外一个芯片,供用户选择。这样的好处是减少了制造的成本,提高了良品率,更降低速度不敏感的用户的支出:他们可以暂时不买数学协处理器,直到需要的时候买一个回来插到IC插座里即可。

1982年,英特尔发布了80286处理器,也就是俗称的286。这是英特尔第一个可以运行所有为其撰写的处理器,在发布后的六年中,全球一共交付了一千五百万台基于286的个人电脑。

80286芯片集成了14.3万只晶体管、16位字长,时钟频率由最初的6MHz逐步提高到20MHz。其内部和外部数据总线皆为16位,地址总线24位。与8086相比,80286寻址能力达到了16MB,可以使用外存储设备模拟大量存储空间,从而大大扩展了80286的工作范围,还能通过多任务硬件机构使处理器在各种任务间来回快速切换,以同时运行多个任务,其速度比8086提高了5倍甚至更多。IBM公司将80286用在技术更为先进AT机中,与IBM PC机相比,AT机的外部总线为16位(PC XT机为8位),内存一般可扩展到16MB,可支持更大的硬盘,支持VGA显示系统,比PC XT机在性能上有了重大的进步。

但是这时候,IBM公司内部发生了很大的分歧:内部很多人反对快速转换到286计算机的销售,因为286 PC会对IBM的小型机与之前的PC XT销售有影响,他们希望缓慢过渡。但是intel公司并不能等,80286处理器已经批量生产了,不可能堆在仓库里等IBM慢慢消化;这时候生产兼容IBM PC的康柏公司就钻了一个空子——快速推出286的PC机,一举打败IBM成为PC市场的新霸主。

微处理器决定了计算机的性能和速度,谁能制造出性能卓越的高速PC,谁便能领导计算机的新潮流,这就是游戏规则。IBM的人最初顺应的这个规则,因此在PC市场大获成功,但是到了286时代,却又放弃了正确的选择,真是让人为之叹惋。

80386进入了32位元的世代

1985年,英特尔再度发力推出了80386处理器。386集成了27万5千只晶体管,超过了4004芯片的一百倍。并且386还是英特尔第一种32位处理器,同时也是第一种具有“多任务”功能的处理器——这对微软的 *** 作系统发展有着重要的影响,所谓“多任务”就是说处理器可以在同时处理几个程序的指令。

不过就如过渡到286一样,英特尔遇到了很大压力。当时有一种流行的观点认为,286已经足够了,根本没有必要生产386电脑,在销售上开始并不如意。但是英特尔的领导人并不这样认为,在宣传上采纳很多新的手法,借鉴了很多消费类产品的办法,让人耳目一新;另一方面,也对386芯片区分出不同的规格,去适应不同的用户需求。尤其是后来推出的80386SX芯片,内部数据总线为32位,与80386相同,但是外部数据总线为16位,既有386的优点,又有286的成本优势,取得了很大的市场成功;同时原本的386芯片改称为386DX,以区别386SX。

386时代,Intel在技术有了很大的进步。80386内部内含27.5万个晶体管,时钟频率为12.5MHz,其后又提高到20MHz、25MHz、33MHz等。80386DX的内部和外部数据总线都是32位,地址总线也是32位,可寻址高达4GB内存。它除具有实模式和保护模式外,还增加了一种叫虚拟模式的工作方式,可同时模拟多个8086处理器来提供多任务能力。

1989年,英特尔发布了486处理器。486处理器是英特尔非常成功的商业项目。很多厂商也看清了英特尔处理器的发展规律,因此很快就随着英特尔的营销战而转型成功。80486处理器集成了125万个晶体管,时钟频率由25MHz逐步提升到33MHz、40MHz、50MHz及后来的100Mhz。

80486也是英特尔第一个内部包含数字协处理器的CPU,并在x86系列中首次使用了RISC(精简指令集)技术,从而提升了每时钟周期执行指令的速度。486还采用了突发总线方式,大大提高了处理器与内存的数据交换速度。由于这些改进,80486的性能比带有80387数学协处理器的80386快了4倍有余。

英特尔将区格用户的策略再次应用在486产品上,因此486分为有数学协处理器的486DX和无数学协处理器的486SX两种,486SX的价格要便宜一些。后来486在倍频上规格有所改进,就出现了486DX2、486DX4的新“变种”。以DX2来举例,其涵义是处理器内


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/8937994.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-23
下一篇 2023-04-23

发表评论

登录后才能评论

评论列表(0条)

保存