压力和紧张,运用得当,有时可以产生惊人的结果。
这就是由加州大学伯克利分校电子工程与计算机科学系领导的研究人员发现的一种新兴半导体材料——黑磷(BP)——用于制造两种光电器件:发光二极管(LEDs)和光探测器。
根据研究作者Ali Javey的说法,在机械压力下,BP可以被诱导发射或探测到波长范围合适的红外(IR)光,波长从2.3到5.5微米,横跨短波到中波的红外波段,并且在室温下可逆地这样做。林半导体加工研究特聘教授和电气工程教授,博士后研究员金炯镇。哈维还是劳伦斯伯克利国家实验室的资深科学家。
Javey和Kim说,他们的发现意义重大,不仅在于达到这些波长的能力,而且在于可调谐地在一个设备中做到这一点。目前的技术将需要多个庞大的设备和不同的半导体材料来实现类似的结果。
他们在《自然》杂志上描述了他们的发现。
Javey和Kim说,能够在一个设备中使用更广泛的红外光谱,可以帮助满足在光通信、热成像、 健康 监测、光谱学、化学传感等领域日益增长的应用需求。为了证明这种灵活性,研究人员使用他们的一种新设备来检测多种气体。
当柔性衬底弯曲时,柔性衬底上的黑磷发生应变。资料来源:Kim hygjin /UC Berkeley
伯克利领导的研究小组发现,在光电设备中使用薄层BP,并使其承受不同程度的应变,可在出乎意料的大范围内实现可逆可调输出波长。BP和其他半导体材料的输出波长是一种被称为带隙的特性。
光电子器件工作的光谱范围很大程度上取决于其半导体材料的带隙。对于给定的应用,可以使用不同的方法来获得所需的工作波长。例如,合金——不同成分的材料——和应变可以用来调节带隙。虽然这些方法确实有效,但它们产生的设备具有固定的工作波长。
“在我们的工作中,我们可以主动改变黑磷的带隙,这样单个光电探测器或LED就可以在大约2到5微米的范围内改变其工作波长,”Kim说。
“我们可以来回多次,只要我们想,”Kim说,基于BP的设备的可逆可调谐波长。他说,他们利用了BP的“神奇”特性,特别是它在应变下的带隙变化,比传统半导体材料观测到的要大得多。
Javey说:“这个装置本身就有创新,但是我们使用的黑磷材料也有固有的独特特性(带隙和应变敏感性),我们将这两个关键特性结合起来。”
黑磷是一种像石墨烯一样的二维材料。在一种被称为剥离的过程中,研究人员使用透明胶带将这种材料的纳米薄层剥离,然后将其转移到柔性聚合物基底上,在这种情况下,是聚对苯二甲酸乙二醇(PETG)。
应变的应用可以主动、可逆地调制黑磷电磁波的波长和光子能量。资料来源:Kim hygjin /UC Berkeley
Kim说:“由于它具有机械灵活性,我们可以将其弯曲到所需的半径,并可控制地向BP施加应变。”即弯曲成为一个有效的调节BP带隙的旋钮。
事实上,由于它的褶皱晶格结构,金说,BP显示出独特的应变依赖性质,除了带隙,包括可调谐范德华相互作用和压电。他说,由于BP的薄膜性质,菌株可以用可逆的方式应用到BP上。
在其中一个应用中,研究人员使用了一种叫做非色散红外气体传感的技术。因为每一种气体都有自己的吸收带,也就是它在特定波长吸收的光量,一个输出波长足够的可调谐红外LED可以探测到,例如,人类呼吸排出的二氧化碳。这是因为这种气体吸收的光在4.3微米左右,在2.3到5.5微米的设备范围内。其他可调BP led可检测的气体包括甲烷和水。
BP光电探测器的一个应用可能是热成像。例如,它可以用在夜视镜中,探测任何放热热源,比如人体。这种可调谐的光电探测器将能够在红外波长范围内进行选择性热成像。
Javey说,从材料的角度来看,人们对识别这种波长范围内效率更高的新型半导体很感兴趣。“那时我们开始研究黑磷,因为我们已经知道它有一个与中波长IR重叠的带隙。从那时起,我们研究了如何使用这种材料制造高效的设备,如led和光电探测器。但这里的新特性是可调性——你可以在大波长范围内用应变主动调整设备。”
接下来,Javey说,“我认为这个设备的概念可以应用到光谱的其他部分,甚至可以制造可以在可见区域运行的设备。”例如,如果这些概念和材料能够通过微型化的机电设备以可制造、可扩展的方式结合在一起,就可以实现新型显示器。”
第四代半导体材料:以氧化镓(Ga2O3)为代表
作为新型的宽禁带半导体材料,氧化镓(Ga2O3)由于自身的优异性能,凭借其比第三代半导体材料SiC和GaN更宽的禁带,在紫外探测、高频功率器件等领域吸引了越来越多的关注和研究。
氧化镓是一种宽禁带半导体,禁带宽度Eg=4.9eV,其导电性能和发光特性良好,因此,其在光电子器件方面有广阔的应用前景,被用作于Ga基半导体材料的绝缘层,以及紫外线滤光片。
第四代半导体的发展背景
随着量子信息、人工智能等高新技术的发展,半导体新体系及其微电子等多功能器件技术也在更新迭代。虽然前三代半导体技术持续发展,但也已经逐渐呈现出无法满足新需求的问题,特别是难以同时满足高性能、低成本的要求。
此背景下,人们将目光开始转向拥有小体积、低功耗等优势的第四代半导体。第四代半导体具有优异的物理化学特性、良好的导电性以及发光性能,在功率半导体器件、紫外探测器、气体传感器以及光电子器件领域具有广阔的应用前景。
目前具有发展潜力成为第四代半导体技术的主要材料体系主要包括:窄带隙的锑化镓、铟化砷化合物半导体;超宽带隙的氧化物材料;其他各类低维材料如碳基纳米材料、二维原子晶体材料等。
功率半导体器件,嘿嘿,本人的本行。功率半导体器件,以前也被称为电力电子器件,简单来说,就是进行功率处理的,具有处理高电压,大电流能力的半导体器件。给个数量吧,电压处理范围从几十V~几千V,电流能力最高可达几千A。典型的功率处理,包括变频、变压、变流、功率管理等等。早期的功率半导体器件:大功率二极管、晶闸管等等,主要用于工业和电力系统(正因如此,早期才被称为电力电子器件)
后来,随着以功率MOSFET器件为代表的新型功率半导体器件的迅速发展,现在功率半导体器件已经非常广泛啦,在计算机、通行、消费电子、汽车电子为代表的4C行业(computer、communication、consumerelectronics、cartronics),功率半导体器件可以说是越来越火,现在不是要节能环保吗,低碳生活,那就需要对能量的处理进行合理的管理,power是啥?通俗的理解不就是功率P=IV吗,所以就需要对电压电流的运用进行有效的控制,这就与功率器件密不可分!功率管理集成电路(PowerManagementIC,也被称为电源管理IC)已经成为功率半导体器件的热点,发展非常迅速噢!
功率半导体器件,在大多数情况下,是被作为开关使用(switch),开关,简单的说,就是用来控制电流的通过和截断。那么,一个理想的开关,应该具有两个基本的特性:
1,电流通过的时候,这个理想开关两端的电压降是零
2,电流截断的时候,这个理想开关两端可以承受的电压可以是任意大小,也就是0~无穷大
因此,功率半导体器件的研究和发展,就是围绕着这个目标不断前进的。现在的功率半导体器件,已经具有很好的性能了,在要求的电压电流处理范围内,可以接近一个比较理想的开关。
好了,扯了这么多,举几个功率半导体器件的例子吧,刚才已经说了,功率二极管,晶闸管,还有功率BJT(就是功率双极型晶体管)这些都是第一代产品了,比较老的了,第二代是以功率MOSFET为代表的新型功率半导体器件,如VDMOS、LDMOS,以及IGBT。
VDMOS即(verticaldouble-diffusionMOSFET)是纵向器件,多用于分立器件;LDMOS即(Lateraldouble-diffusionMOSFET),是横向器件,其三个电极均在硅片表面,易于集成,多用于功率集成电路领域。IGBT即(InsulatedGateBipolarTransistor绝缘栅双极型晶体管),可以看作是功率MOS和功率BJT的混合型新器件。IGBT目前非常火啊,国内才刚刚起步,大量需要IGBT的高技术人才,这个有钱途的。
扯了好多啊,先就这么多吧,要细说的话,可以说一天。希望我的回答对你有帮助,一字一句都是原创,望采纳
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)