什么叫纯净半导体。P型半导体和N型半导体?

什么叫纯净半导体。P型半导体和N型半导体?,第1张

半导体:电阻率介于金属和绝缘体之间并有负的电阻温度系数的物质称为半导体: 半导体室温时电阻率约在1mΩ·cm~1GΩ·cm之间(上限按谢嘉奎《电子线路》取值,还有取其1/10或10倍的;因上角标暂不可用,暂用当前方法描述),温度升高时电阻率则减小。半导体材料很多,按化学成分可分为元素半导体和化合物半导体两大类。锗和硅是最常用的元素半导体;化合物半导体包括第Ⅲ和第Ⅴ族化合物(砷化镓、磷化镓等)、第Ⅱ和第Ⅵ族化合物( 硫化镉、硫化锌等)、氧化物(锰、铬、铁、铜的氧化物),以及由Ⅲ-Ⅴ族化合物和Ⅱ-Ⅵ族化合物组成的固溶体(镓铝砷、镓砷磷等)。除上述晶态半导体外,还有非晶态的玻璃半导体、有机半导体等。本征半导体:不含杂质且无晶格缺陷的半导体称为本征半导体。在极低温度下,半导体的价带是满带(见能带理论),受到热激发后,价带中的部分电子会越过禁带进入能量较高的空带,空带中存在电子后成为导带,价带中缺少一个电子后形成 半导体一个带正电的空位,称为空穴。导带中的电子和价带中的空穴合称电子- 空穴对,均能自由移动,即载流子,它们在外电场作用下产生定向运动而形成宏观电流,分别称为电子导电和空穴导电。这种由于电子-空穴对的产生而形成的混合型导电称为本征导电。导带中的电子会落入空穴,电子-空穴对消失,称为复合。复合时释放出的能量变成电磁辐射(发光)或晶格的热振动能量(发热)。在一定温度下,电子- 空穴对的产生和复合同时存在并达到动态平衡,此时半导体具有一定的载流子密度,从而具有一定的电阻率。温度升高时,将产生更多的电子- 空穴对,载流子密度增加,电阻率减小。无晶格缺陷的纯净半导体的电阻率较大,实际应用不多。多样性物质存在的形式多种多样,固体、液体、气体、等离子体等等。我们通常把导电性差或不好的材料,如金刚石、人工晶体、琥珀、陶瓷等等,称为绝缘体。而把导电性比较好的金属如金、银、铜、铁、锡、铝等称为导体。可以简单的把介于导体和绝缘体之间的材料称为半导体。与导体和绝缘体相比,半导体材料的发现是最晚的,直到20世纪30年代,当材料的提纯技术改进以后,半导体的存在才真正被学术界认可。分类半导体的分类,按照其制造技术可以分为:集成电路器件,分立器件、光电半导体、逻辑IC、模拟IC、储存器等大类,一般来说这些还会被分成小类。此外还有以应用领域、设计方法等进行分类,虽然不常用,但还是按照IC、LSI、VLSI(超大LSI)及其规模进行分类的方法。此外,还有按照其所处理的信号,可以分成模拟、数字、模拟数字混成及功能进行分类的方法。编辑本段特点半导体五大特性∶掺杂性,热敏性,光敏性,负电阻率温度特性,整流特性。★在形成晶体结构的半导体中,人为地掺入特定的杂质元素,导电性能具有可控性。★在光照和热辐射条件下,其导电性有明显的变化。晶格:晶体中的原子在空间形成排列整齐的点阵,称为晶格。共价键结构:相邻的两个原子的一对最外层电子(即价电子)不但各自围绕自身所属的原子核运动,而且出现在相邻原子所属的轨道上,成为共用电子,构成共价键。自由电子的形成:在常温下,少数的价电子由于热运动获得足够的能量,挣脱共价键的束缚变成为自由电子。空穴:价电子挣脱共价键的束缚变成为自由电子而留下一个空位置称空穴。电子电流:在外加电场的作用下,自由电子产生定向移动,形成电子电流。空穴电流:价电子按一定的方向依次填补空穴(即空穴也产生定向移动),形成空穴电流。本征半导体的电流:电子电流+空穴电流。自由电子和空穴所带电荷极性不同,它们运动方向相反。载流子:运载电荷的粒子称为载流子。导体电的特点:导体导电只有一种载流子,即自由电子导电。本征半导体电的特点:本征半导体有两种载流子,即自由电子和空穴均参与导电。本征激发:半导体在热激发下产生自由电子和空穴的现象称为本征激发。复合:自由电子在运动的过程中如果与空穴相遇就会填补空穴,使两者同时消失,这种现象称为复合。动态平衡:在一定的温度下,本征激发所产生的自由电子与空穴对,与复合的自由电子与空穴对数目相等,达到动态平衡。载流子的浓度与温度的关系:温度一定,本征半导体中载流子的浓度是一定的,并且自由电子与空穴的浓度相等。当温度升高时,热运动加剧,挣脱共价键束缚的自由电子增多,空穴也随之增多(即载流子的浓度升高),导电性能增强;当温度降低,则载流子的浓度降低,导电性能变差。结论:本征半导体的导电性能与温度有关。半导体材料性能对温度的敏感性,可制作热敏和光敏器件,又造成半导体器件温度稳定性差的原因。杂质半导体:通过扩散工艺,在本征半导体中掺入少量合适的杂质元素,可得到杂质半导体。P型半导体:在纯净的硅晶体中掺入三价元素(如硼),使之取代晶格中硅原子的位置,就形成了P型半导体。多数载流子:P型半导体中,空穴的浓度大于自由电子的浓度,称为多数载流子,简称多子。少数载流子:P型半导体中,自由电子为少数载流子,简称少子。受主原子:杂质原子中的空位吸收电子,称受主原子。P型半导体的导电特性:它是靠空穴导电,掺入的杂质越多,多子(空穴)的浓度就越高,导电性能也就越强。N型半导体:在纯净的硅晶体中掺入五价元素(如磷),使之取代晶格中硅原子的位置,形成N型半导体。多子:N型半导体中,多子为自由电子。少子:N型半导体中,少子为空穴。施子原子:杂质原子可以提供电子,称施子原子。N型半导体的导电特性:掺入的杂质越多,多子(自由电子)的浓度就越高,导电性能也就越强。结论:多子的浓度决定于杂质浓度。少子的浓度决定于温度。PN结的形成:将P型半导体与N型半导体制作在同一块硅片上, PN结的形成过程在它们的交界面就形成PN结。PN结的形成过程:如图所示,将P型半导体与N型半导体制作在同一块硅片上,在无外电场和其它激发作用下,参与扩散运动的多子数目等于参与漂移运动的少子数目,从而达到动态平衡,形成PN结。扩散运动:物质总是从浓度高的地方向浓度低的地方运动,这种由于浓度差而产生的运动称为扩散运动。空间电荷区:扩散到P区的自由电子与空穴复合,而扩散到N区的空穴与自由电子复合,所以在交界面附近多子的浓度下降,P区出现负离子区,N区出现正离子区,它们是不能移动,称为空间电荷区。电场形成:空间电荷区形成内电场。空间电荷加宽,内电场增强,其方向由N区指向P区,阻止扩散运动的进行。漂移运动:在电场力作用下,载流子的运动称漂移运动。电位差:空间电荷区具有一定的宽度,形成电位差Uho,电流为零。耗尽层:绝大部分空间电荷区内自由电子和空穴的数目都非常少,在分析PN结时常忽略载流子的作用,而只考虑离子区的电荷,称耗尽层。PN结的特点:具有单向导电性。编辑本段伏安特性曲线

下面,我们将采用对比分析的方法来认识P型半导体和N型半导体。

P型半导体也称为空穴型半导体。P型半导体即空穴浓度远大于自由电子浓度的杂质半导体。在纯净的硅晶体中掺入三价元素(如硼),使之取代晶格中硅原子的位子,就形成P型半导体。在P型半导体中,空穴为多子,自由电子为少子,主要靠空穴导电。空穴主要由杂质原子提供,自由电子由热激发形成。掺入的杂质越多,多子(空穴)的浓度就越高,导电性能就越强。

N型半导体也称为电子型半导体。N型半导体即自由电子浓度远大于空穴浓度的杂质半导体。在纯净的硅晶体中掺入五价元素(如磷),使之取代晶格中硅原子的位置,就形成了N型半导体。在N型半导体中,自由电子为多子,空穴为少子,主要靠自由电子导电。自由电子主要由杂质原子提供,空穴由热激发形成。掺入的杂质越多,多子(自由电子)的浓度就越高,导电性能就越强。

扩展资料

半导体( semiconductor),指常温下导电性能介于导体(conductor)与绝缘体(insulator)之间的材料。半导体在收音机、电视机以及测温上有着广泛的应用。如二极管就是采用半导体制作的器件。半导体是指一种导电性可受控制,范围可从绝缘体至导体之间的材料。无论从科技或是经济发展的角度来看,半导体的重要性都是非常巨大的。今日大部分的电子产品,如计算机、移动电话或是数字录音机当中的核心单元都和半导体有着极为密切的关连。常见的半导体材料有硅、锗、砷化镓等,而硅更是各种半导体材料中,在商业应用上最具有影响力的一种。

以GaN(氮化镓)为代表的第三代半导体材料及器件的开发是新兴半导体产业的核心和基础,其研究开发呈现出日新月异的发展势态。GaN基光电器件中,蓝色发光二极管LED率先实现商品化生产 成功开发蓝光LED和LD之后,科研方向转移到GaN紫外光探测器上 GaN材料在微波功率方面也有相当大的应用市场。氮化镓半导体开关被誉为半导体芯片设计上一个新的里程碑。美国佛罗里达大学的科学家已经开发出一种可用于制造新型电子开关的重要器件,这种电子开关可以提供平稳、无间断电源。

参考资料

半导体-百度百科

在本征半导体中加入五价元素可形成n型半导体。本征半导体中加入磷、锑、砷元素可形成N型半导体,加入的都是5价元素。

本征半导体是指完全不含杂质且无晶格缺陷的纯净半导体,一般是指其导电能力主要由材料的本征激发决定的纯净半导体。典型的本征半导体有硅(Si)、锗(Ge)及砷化镓(GaAs)等。n型半导体也称为电子型半导体。N型半导体即自由电子浓度远大于空穴浓度的杂质半导体。

半导体

在绝对零度温度下,半导体的价带是满带,受到光电注入或热激发后,价带中的部分电子会越过禁带进入能量较高的空带,空带中存在电子后成为导带,价带中缺少一个电子后形成一个带正电的空位,称为空穴,导带中的电子和价带中的空穴合称为电子空穴对。

上述产生的电子和空穴均能自由移动,成为自由载流子,它们在外电场作用下产生定向运动而形成宏观电流,分别称为电子导电和空穴导电。在本征半导体中,这两种载流子的浓度是相等的。随着温度的升高,其浓度基本上是按指数规律增长的。

半导体实验

导带中的电子会落入空穴,使电子空穴对消失,称为复合。复合时产生的能量以电磁辐射或晶格热振动的形式释放。在一定温度下,电子空穴对的产生和复合同时存在并达到动态平衡,此时本征半导体具有一定的载流子浓度,从而具有一定的电导率。

加热或光照会使半导体发生热激发或光激发,从而产生更多的电子空穴对,这时载流子浓度增加,电导率增加。半导体热敏电阻和光敏电阻等半导体器件就是根据此原理制成的。常温下本征半导体的电导率较小,载流子浓度对温度变化敏感,所以很难对半导体特性进行控制,因此实际应用不多。

P型半导体

N型半导体,以电子为多数载流子的半导材料,n为negative(负)之意。n型半导体是通过引入施主型杂质而形成的。在纯半导体材料中掺入杂质,使禁带中出现杂质能级,若杂质原子能给出电子的,其能级为施主能级,该半导体为n型半导体。

如将V族元素砷杂质加入到IV族半导体硅中。它能改变半导体的导电率和导电类型。对n型半导体,电子激发进入导带成为主要载流子。例如,掺入第15(VA)族元素(磷、砷、锑、铋等)的硅与锗。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/8957498.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-23
下一篇 2023-04-23

发表评论

登录后才能评论

评论列表(0条)

保存