氮化镓充电器是新的充电科技设备,功率更大,体积更小。
氮化镓的化学名称是GaN,氮化镓充电器是一种新的充电科技设备。采用氮化镓做材料的充电器,可以拥有更大功率更小体积。氮化镓充电器能使同等功率下体积更小,同等体积下功率更大。
氮化镓充电器相比硅基半导体的优势
氮化镓充电器等新技术有望大幅改进电源管理、发电和功率输出的诸多方面,它具有禁带宽度大、热导率高、耐高温、抗辐射、耐酸碱、高强度和高硬度等特性。
氮化镓是一种可以代替硅、锗的新型半导体材料,由它制成的氮化镓开关管开关频率大幅度提高,损耗却更小。这样充电器就能够使用体积更小的变压器和其他电感元件,从而有效提高效率。
氮化镓相比传统硅基半导体,有着比硅基半导体出色的击穿能力,更高的电子密度和电子迁移率,还有更高的工作温度。
普通充电器的核心制造原料是硅。技术和材料之间的关系就像巧妇难为无米之炊。是的,技术进步了,但受限于硅的性能,普通充电器不会有太大的发展了。
现在越来越多充电器开始换成氮化镓充电器了,氮化镓充电器看起来很小,但是功率一般很大,可以给手机平板,甚至笔记本电脑充电。那么氮化镓到底是什么,氮化镓充电器有哪些优点,下文简单做个分析。
一、氮化镓是什么
氮化镓(GaN)是氮和镓化合物,具体半导体特性,早期应用于发光二极管中,它与常用的硅属于同一元素周期族,硬度高熔点高稳定性强。氮化镓材料是研制微电子器件的重要半导体材料,具有宽带隙、高热导率等特点,应用在充电器方面,主要是集成氮化镓MOS管,可适配小型变压器和高功率器件,充电效率高。
二、氮化镓充电器的优劣势
首先要说明下,氮化镓充电器跟普通充电器相比,只是材料不同,功能几乎无区别。
优点:体积小、安全
与普通半导体的硅材料相比,氮化镓的带隙更宽且导热好,能够匹配体积更小的变压器和大功率电感,所以氮化镓充电器有体积小、效率高、更安全等优势。近来的旗舰手机平板为了实现更快的充电速度,充电器功率都比较大,40W50W充电器非常普遍。更大的充电功率就意味着充电器的尺寸也在变大,并且发热严重。
改用氮化镓技术后,充电器的元器件可以更小,充电器体积大幅缩小;同时氮化镓充电器也能保持高效和低温的工作状态,安全性更好。
氮化镓充电器主要缺点是成本高。氮化镓作为新型第三代化合物,合成环境要求很高,从制造工艺上讲,氮化镓没有液态,不能使用单晶硅的传统直拉法拉出单晶,纯靠气体反应合成,在氨气流中超过1000度加热金属镓半小时才能形成粉末状氮化镓,所以氮化镓充电器的成本更高,对应市面上的氮化镓充电器售价也比传统充电器高出一大截。
氮化镓充电器和普通充电器区别表现在:材质不同、特点不同。
1、材质不同
传统的普通充电器,它的基础材料是硅。
氮化镓(GaN)被称为第三代半导体材料。
2、特点不同
相比硅,氮化镓的性能成倍提升,而且比硅更适合做大功率器件、体积更小、功率密度更大。氮化镓芯片频率远高于硅,有效降低内部变压器等原件体积,同时优秀的散热性能也使内部原件排布可以更加精密。
普通充电器快充头体积大,携带起来非常不方便,一些大功率充电器长时间充电还容易引起充电头发热。
工作原理
所有手机充电器其实都是由一个稳定电源(主要是稳压电源、提供稳定工作电压和足够的电流)加上必要的恒流、限压、限时、过冲等控制电路组成。
原装充电器(指线充)上所标注的输出参数:比如输出4.4V/1A、输出5.9V/400mA,就是指内部稳压电源的相关参数。比如输出4.4V可以给4.5V的设备用,5.9V的可以给6V的设备用。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)