半导体是指常温下导电性能介于导体与绝缘体之间的材料。半导体在集成电路、消费电子、通信系统、光伏发电、照明、大功率电源转换等领域都有应用,如二极管就是采用半导体制作的器件。常见的半导体材料有硅、锗、砷化家等。半导体还以多种形态存在,包括固体、液体、气体、等离子体等等。作为常温下的导电性能介于导体与绝缘体之间的材料,半导体在收音机、电视机以及测温上有着广泛的应用。无论从科技或是经济发展的角度来看,半导体的重要性都是非常巨大的。半导体也被称为半导体或芯片,它可以在数千种产品中找到,例如计算机,智能手机,设备,游戏硬件和医疗设备。
半导体行业的成功取决于制造更小,更快和更便宜的产品。小巧的好处是可以在同一芯片上放置更多功率。芯片上的晶体管越多,其工作速度就越快。这在行业中引起了激烈的竞争,新技术降低了每个芯片的生产成本,因此在几个月内,新芯片的价格可能下降5%。
这引起了称为摩尔定律的观察,该定律指出,密集集成电路中的晶体管数量大约每两年翻一番。该观察结果以仙童半导体和英特尔共同创始人戈登·摩尔的名字命名,他在1965年撰写了一篇描述该现象的论文。如今,倍增期通常被引用为18个月,这一数字被英特尔高管戴维·豪斯(DavidHouse)引用。
结果,不断给芯片制造商施加压力,要求它们比几个月前定义的最新技术更好甚至更便宜。因此,半导体公司需要维持大量的研发预算。半导体市场研究协会ICInsights报告称,217年最大的1家半导体公司在研发方面的支出平均占销售额的13.%,单个公司的比例为5.2%至24.%。
传统上,半导体公司控制从设计到制造的整个生产过程。然而,许多芯片制造商现在将越来越多的生产委托给业内其他公司。专注于制造的铸造公司最近脱颖而出,提供有吸引力的外包选择。除了铸造厂,越来越专业的设计师和芯片测试人员的队伍也开始膨胀。芯片公司正在变得越来越精益,效率更高。薯条生产现在类似于美食餐厅的厨房,厨师们在这里排队,为调味料添加恰到好处的香料。
半导体( semiconductor),指常温下导电性能介于导体(conductor)与绝缘体(insulator)之间的材料。半导体在收音机、电视机以及测温上有着广泛的应用。
如二极管就是采用半导体制作的器件。半导体是指一种导电性可受控制,范围可从绝缘体至导体之间的材料。无论从科技或是经济发展的角度来看,半导体的重要性都是非常巨大的。
今日大部分的电子产品,如计算机、移动电话或是数字录音机当中的核心单元都和半导体有着极为密切的关连。常见的半导体材料有硅、锗、砷化镓等,而硅更是各种半导体材料中,在商业应用上最具有影响力的一种。
分类:
半导体材料很多,按化学成分可分为元素半导体和化合物半导体两大类。
锗和硅是最常用的元素半导体;化合物半导体包括第Ⅲ和第Ⅴ族化合物(砷化镓、磷化镓等)、第Ⅱ和第Ⅵ族化合物( 硫化镉、硫化锌等)、氧化物(锰、铬、铁、铜的氧化物),以及由Ⅲ-Ⅴ族化合物和Ⅱ-Ⅵ族化合物组成的固溶体(镓铝砷、镓砷磷等)。
除上述晶态半导体外,还有非晶态的玻璃半导体、有机半导体等。
半导体的分类,按照其制造技术可以分为:集成电路器件,分立器件、光电半导体、逻辑IC、模拟IC、储存器等大类,一般来说这些还会被分成小类。
此外还有以应用领域、设计方法等进行分类,虽然不常用,但还是按照IC、LSI、VLSI(超大LSI)及其规模进行分类的方法。此外,还有按照其所处理的信号,可以分成模拟、数字、模拟数字混成及功能进行分类的方法。
扩展资料:发展历史:
半导体的发现实际上可以追溯到很久以前。
1833年,英国科学家电子学之父法拉第最先发现硫化银的电阻随着温度的变化情况不同于一般金属,一般情况下,金属的电阻随温度升高而增加,但巴拉迪发现硫化银材料的电阻是随着温度的上升而降低。这是半导体现象的首次发现。
不久,1839年法国的贝克莱尔发现半导体和电解质接触形成的结,在光照下会产生一个电压,这就是后来人们熟知的光生伏特效应,这是被发现的半导体的第二个特征。
1873年,英国的史密斯发现硒晶体材料在光照下电导增加的光电导效应,这是半导体又一个特有的性质。
半导体的这四个效应,(jianxia霍尔效应的余绩──四个伴生效应的发现)虽在1880年以前就先后被发现了,但半导体这个名词大概到1911年才被考尼白格和维斯首次使用。而总结出半导体的这四个特性一直到1947年12月才由贝尔实验室完成。
在1874年,德国的布劳恩观察到某些硫化物的电导与所加电场的方向有关,即它的导电有方向性,在它两端加一个正向电压,它是导通的;如果把电压极性反过来,它就不导电,这就是半导体的整流效应,也是半导体所特有的第三种特性。同年,舒斯特又发现了铜与氧化铜的整流效应。
很多人会疑问,为什么半导体被认可需要这么多年呢?主要原因是当时的材料不纯。没有好的材料,很多与材料相关的问题就难以说清楚。
参考资料:百度百科-半导体
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)