半导体中的载流子是什么

半导体中的载流子是什么,第1张

在物理学中,载流子指可以自由移动的带有电荷的物质微粒,如电子和离子。在半导体物理学中,电子流失导致共价键上留下的空位(空穴引)被视为载流子。

金属中为电子,半导体中有两种载流子即电子和空穴。在电场作用下能作定向运动的带电粒子。如半导体中的自由电子与空穴,导体中的自由电子,电解液中的正、负离子,放电气体中的离子等。

载流子与半导体的关系

载流子,是承载电荷的、能够自由移动以形成电流的物质粒子。半导体的性质跟导体和绝缘体不同,是因为其能带结构不同;

而半导体的导电能力可以控制,主要是因为其载流子的种类和数量与导体和绝缘体不同,并且可以受到控制,其调节手段就是“掺杂”,即往纯净的半导体中掺入杂质,来改变其载流子数量、分布和运动趋势,从而改变整体导电性能。

绝缘体和金属导体的载流子是电子,而半导体除了电子外,还有一种载流子叫空穴。另外还有正离子、负离子也都带有电荷,但是在半导体中,它们一般不会流动,所以认为半导体的载流子就是电子和空穴这两种。

电子作为载流子容易理解,因为物质中的原子是由原子核和电子组成的,在一定条件下挣脱原子核束缚的自由电子可以运动,因而产生电流。

而所谓空穴,就是由于电子的缺失而留下的空位。这就好像车与车位的关系,假设有一排共5个车位,从左边开始按顺序停了4辆车,最右边有1个空位,如果最左边的车开到最右边的空位上去,那么最左边的车位就空出来了。

看起来好像是空位从右边到了左边,这是一种相对运动,车从左到右的移动,相当于空位从右到左的移动。同样道理,带负电的电子的运动,可看作是带正电的空穴的反方向运动。

在没有杂质的纯净半导体中,受热激发产生的移动的电子数量和空穴数量是相等的,因为带负电的电子和带正电的空穴会进行复合,在数量大致相等的情况下,“产生”和“复合”会达到一个动态平衡,这样宏观上看来并没有产生有效电流。为了改善其导电性能,就引入了掺杂手段。

对集成电路来说,最重要的半导体材料是硅。硅原子有4个价电子,它们位于以原子核为中心的四面体的4个顶角上。这些价电子会与其他硅原子的价电子结合成共价键,大量的硅原子以这种方式互相结合,形成结构规律的晶体。

如果给它加入砷(或磷),砷最外层有5个电子,其中4个电子也会跟硅原子的4个价电子结合成共价键,把砷原子固定在硅材料的晶格中。此时会多出1个自由电子,这个电子跃迁至导带所需的能量较低,容易在硅晶格中移动,从而产生电流。

这种掺入了能提供多余电子的杂质而获得导电能力的半导体称为N型半导体,“N”为Negative,代表带负电荷的意思。

如果我们在纯硅中掺入硼(B),因为硼的价电子只有3个,要跟硅原子的4个价电子结合成共价键,就需要吸引另外的1个电子过来,这样就会形成一个空穴,作为额外引入的载流子,提供导电能力。这种掺入可提供空穴的杂质后的半导体,叫做P型半导体,“P”是Positive,代表带来正电荷的意思。

需要注意的是,掺入杂质后的半导体中仍然同时具有电子和空穴这两种载流子,只是各自数量不同。在N型半导体中,电子(带负电荷)居多,叫多数载流子,空穴(带正电荷)叫少数载流子。在P型半导体中,则反之:空穴为多数载流子,电子为少数载流子;可以分别简称为“多子”、“少子”。

一、多数载流子和少数载流子

在半导体中,电子和空穴作为载流子。数目较多的载流子称为多数载流子;在N型半导体中多数载流子是电子,而在P型半导体中多数载流子是空穴。数目较少的载流子称为少数载流子;在N型半导体中少数载流子是空穴,而在P型半导体中少数载流子是电子。

少数载流子在双极性晶体管和太阳能电池中起重要作用。不过,此种载流子在场效应管(FET)中的作用是有些复杂的:例如,MOSFET兼有P型和N型。晶体管涉及到源漏区,但这些少数载流子横穿多数载流子体。

不过在传送区内,横穿的载流子比其相反类型载流子的数目多得多(实际上,相反类型的载流子会被外加电场移除而形成耗尽层),因此按惯例为源漏选定的载流子是可采用的,而FET被称为“多数载流子”设备。

当电子遇到空穴时,二者复合后自由载流子就很快消失了。释放的能量可以是热,会加热半导体(热复合,半导体中废热的一个来源),或者释放光子(光复合,用于LED和半导体激光中)。

二、自由载流子浓度

自由载流子浓度是浓度自由载流子在掺杂半导体。它类似于金属中的载流子浓度,并且可以以相同的方式用于计算电流或漂移速度。

自由载流子是通过掺杂直接引入导带(或价带)并且没有被热促进的电子(或空穴)。由于这个原因,电子(空穴)不会通过在另一个能带中留下空穴(电子)来充当双载流子。换句话说,电荷载流子是可以自由移动(携带电荷)的粒子/电子。

以上内容参考 百度百科-载流子

多数载流子与少数载流子

载流子可区分为多数载流子和少数载流子两种。譬如,对于n型半导体,其中的电子就是多数载流子,而空穴是少数载流子。实际上,这不仅是数量多少的差异,而更重要的是它们性质上的不同。例如:

①多数载流子主要由掺杂所提供的,则在室温下,其浓度与温度的关系不大(杂质全电离),而少数载流子主要由本征激发所产生,则随着温度的升高将指数式增加;

②能够注入到半导体中去的载流子,或者能够从半导体中抽出来的载流子,实际上往往是少数载流子,而多数载流子一般是不能注入、也不能抽出的;

③少数载流子能够在局部区域积累或减少,即可形成一定的浓度梯度,而多数载流子在半导体内部难以积累起来,所以多数载流子的浓度一般都不能改变,从而不能形成浓度梯度。也正因为如此,为了维持半导体电中性,所以在注入了少数载流子的同时,也将增加相同数量的多数载流子,并且它们的浓度梯度也相同;

④因为一般只有少数载流子才能注入和抽出,所以半导体中的非平衡载流子一般也就是少数载流子。非平衡少数载流子可由于复合而消失,因此具有一定的寿命时间(从ns到μs),而多数载流子一般就是热平衡载流子,其存在的有效时间也就是所谓介电弛豫时间(非常短,常常可忽略);

⑤少数载流子在浓度梯度驱动下,将一边扩散、一边复合,有一个有效存在的范围——扩散长度(可达nm数量级),而多数载流子的有效存在范围是所谓Debye屏蔽长度(很短);

⑥少数载流子主要是扩散运动,输运电荷的能力决定于其浓度梯度,而多数载流子主要是漂移运动,输运能力主要是决定于多数载流子浓度和电场;等等。

(4)少数载流子的作用:

少数载流子虽然数量少,但是它所产生的电流却不一定小,其主要原因就是它们能够产生很大的浓度梯度,从而可输运很大的电流。例如数百安培工作电流的SCR就是少数载流子工作的器件,所有BJT 就都是少数载流子工作的器件。相反,多数载流子工作的器件,其电流倒不一定很大。

少数载流子能够存储(积累),则对于器件的开关速度有很大影响;而多数载流子的电容效应(势垒电容)往往是影响器件最高工作频率的因素。

P型半导体即空穴浓度远大于自由电子浓度的杂质半导体。

如果半导体中电子浓度大时,电子就是多数载流电子,空穴就是少数载流电子。相反,如果该半导体中空穴浓度大时,空穴就是多数载流电子,电子就是少数载流电子。

P型半导体:在纯净的硅晶体中掺入三价元素(如硼),使之取代晶格中硅原子的位置,形成P型半导体,N型半导体:在纯净的硅晶体中掺入五价元素(如磷),使之取代晶格中硅原子的位置,就形成了N型半导体。

扩展资料:

P型半导体中多数载流子为空穴,空穴是带正电荷载流子。N型半导体中多数是自由电子,自由电子是带负电荷载流子。

是以带正电的空穴导电为主的半导体。在纯硅中掺入微量3价元素铟或铝,由于铟或铝原子周围有3个价电子,与周围4价硅原子组成共价结合时缺少一个电子,形成一个空穴。空穴相当于带正电的粒子,在这类半导体的导电中起主要作用。

参考资料来源:百度百科-空穴型半导体


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/8970081.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-23
下一篇 2023-04-23

发表评论

登录后才能评论

评论列表(0条)

保存