(文/陈辰 编辑/尹哲)众所周知,芯片制造主要简单分为设计、制造和封装三大环节。其中,芯片制造是国内半导体被“卡脖子”最重要的环节。
近年来,随着产业发展及国际形势变化,中芯国际一度成为“全村的希望”。因此,在一路“绿灯”下,中芯国际顺利登上科创板,成为国内晶圆代工第一股。
如今,继中芯国际之后,第三大晶圆代工企业——合肥晶合集成电路股份有限公司(下称“晶合集成”)也拟进军科创板,以实现多元化发展。
5月11日,晶合集成的首次公开发行股票招股书(申报稿)已获上交所科创板受理,并于6月6日变更为“已问询”状态。
招股书显示, 公司拟发行不超过5.02亿股,募集资金120亿元,预计全部投入位于合肥的12英寸晶圆制造二厂项目。
根据规划, 募投项目将建设一条产能为4万片/月的晶圆代工生产线,主要产品包括电源管理芯片(PMIC)、显示驱动整合芯片(DDIC)、CMOS图像传感芯片(CIS)。
图源:晶合集成招股书,下同
自12英寸晶圆制造一厂投产以来,晶合集成主要从事显示面板驱动芯片代工业务,产品广泛应用于液晶面板领域,其中包括电脑、电视和智能手机等产品。
与此同时,随着产能持续抬升以及工艺不断精进,晶合集成的营业收入实现高速增长。
而在这背后, 晶合集成的经营发展也存在系列风险,其中包括产品结构较单一、客户集中度极高、盈利能力不足,以及扩产项目能否达成预期业绩等 。
因此,尽管自带“国内第三大晶圆代工企业”光环,但晶合集成未来数年发展走势如何,仍是一个尚难定论的未知数。而要实现多元化及技术突破,其还需攻坚克难、砥砺前行。
诞生与发迹“错配”
近十年来,合肥新型显示产业异军突起,加剧了“有屏无芯”的矛盾。同时,电子信息企业快速集聚,更激起地方政府打造“IC之都”的雄心。
“大约在2013年左右,家电、平板显示已经作为合肥的支柱产业,但在寻求转型升级时都遇到了同一个问题——缺‘芯’。”合肥市半导体行业协会理事长陈军宁教授曾表示。
为了解决缺芯问题,合肥市邀请了中国半导体行业的十几名专家一起参与讨论和论证,最终制定了合肥市第一份集成电路产业发展规划。
基于此,2015年,合肥建投与台湾力晶集团合作建设安徽省首家12英寸晶圆代工厂——晶合集成。
据部分媒体报道, 这一项目旨在解决京东方的面板驱动芯片供应问题。
晶合集成合肥12英寸晶圆代工厂
根据总体规划,晶合集成将在合肥新站高新技术产业开发区综合保税区内,建置四座12寸晶圆厂。其中一期投资128亿元,制程工艺为150nm、110nm以及90nm。
至于力晶达成合作的重要原因,是其当时遭遇了产能过剩危机重创,便致力于从动态存储芯片(DRAM)厂商转型为芯片代工企业。
2017年10月,晶合集成的显示面板驱动芯片(DDIC)生产线正式投产。这是安徽省第一座12寸晶圆代工厂,也是安徽省首个超百亿级集成电路项目。
随后,晶合集成的产能实现迅速爬升。招股书显示,2018年至2020年(下称“报告期内”), 公司产能分别为7.5万片/年、18.2万片/年和26.6万片/年,年均复合增长率达88.59%。
与此同时,其产品也迅速占领市场。据央视报道称,2020年占全球出货量20%的手机、14%的电视机和7%的笔记本电脑,采用的都是晶合集成的驱动芯片产品。
对于近五年实现快速发展的原因,晶合集成董事长蔡国智曾总结为,首先是“选对合作伙伴很重要”,以及公司对市场趋势判断正确、不间断的投资和新冠疫情带来的“红利”。
但稍显“遗憾”的是,报告期内, 晶合集成向境外客户销售收入分别为2.15亿元、4.68亿元和12.63亿元,占当期总营收比例为98.59%、87.69%、83.51%。
其中,鉴于公司的台湾“背景”及相关资源,晶合集成的境外客户中中国台湾地区客户占比颇高。
这也就是说,京东方并没有大量采购晶合集成的面板驱动芯片。业内数据统计,我国驱动芯片仍以进口为主。2019年,京东方驱动芯片采购额为60亿元,国产化率还不到5%,可见配套差距之大。
此外,晶合集成依赖境外市场同时,还存在客户集中度极高的问题。
报告期内, 其源自前五大客户的收入占总营收比例均约九成。其中,2019年和2020年,公司过半总营收来自第一大客户。 这显然对公司的议价能力和稳定经营不利。
国资台资加持主控
诚然,如蔡国智所言,晶合集成的快速成长的确得益于“不间断的投资”。
2015年5月12日,合肥市国资委发文同意合肥建投组建全资子公司晶合有限(晶合集成前身),注册资本为1000万元。
成立之初,晶合有限仅有合肥建投一个股东。随后,在国内半导体产业以及合肥电子信息产业迅速发展情况下,公司决定大搞建设。
2018年10月,晶合有限增资,合肥芯屏、力晶 科技 入股。具体股比上,合肥建投持股32.71%,合肥芯屏持股26.01%,力晶 科技 持股41.28%。
后来经过数次减资、增资,晶合有限于2020年11月正式整体变更设立为股份公司,即晶合集成。
截至招股书签署日, 合肥建投直接持有发行人31.14%股份,并通过合肥芯屏控制晶合集成21.85%股份,合计占有52.99%股份。而力晶 科技 的持股比例降至27.44%。
值得一提,合肥市国资委持有合肥建投100%的股权,因而为晶合集成的实际控制人。
那么,多次出现且持股一度占优的力晶 科技 是什么来头?
资料显示,力晶 科技 是一家1994年注册在中国台湾的公司。经过业务重组,其于2019年将其晶圆代工业务转让至力积电,并持有力积电26.82%的股权,成为控股型公司。
得益于力晶 科技 的较强势“助攻”,力积电的晶圆代工业务迅速实现位居世界前列。
调研机构预估,力积电2020年前三季度营收2.89亿美元左右,位列全球十大芯片代工第7名,领先另一家台湾半导体企业——世界先进一个名次。
而除了力晶 科技 和合肥市国资委之外,晶合集成还曾于2020年9月引入中安智芯等12家外部投资者。
其中, 美的集团旗下的美的创新持有晶合集成5.85%股权。而持股0.12%的中金公司则是晶合集成此次IPO的保荐机构。
不过,证监会及沪深交易所今年初发布公告显示,申报前12个月内产生的新股东将被认定为突击入股,且上述新增股东应当承诺所持新增股份自取得之日起36个月内不得转让。
鉴于晶合集成的申报稿是于2021年5月11日被上交所受理,美的创新、海通创新等12家股东均属于突击入股 ,才搭上了晶合集成奔赴上市的列车。
对此,晶合集成解释称,股东入股是正常的商业行为,是对公司前景的长期看好。
“上述公司/企业已承诺取得晶合集成股份之日起36个月内不转让或者委托他人管理在本次发行上市前直接或间接持有的晶合集成股份,也不由晶合集成回购在本次发行上市前直接或间接持有的晶合集成股份。”
经营业绩持续增长
背靠有半导体技术基因的力晶 科技 ,以及资金雄厚且自带官方背书的合肥建投,晶合集成近年来在营收方面有较明显增长。
报告期内, 晶合集成的营业收入分别为2.18亿、5.34亿和15.12亿元人民币,主营业务收入年均复合增长率达163.55%。
其中,2020年,疫情刺激全球宅经济、远距经济等需求大举攀升,而半导体作为 科技 产品的基础元件也自然受惠。因此,晶合集成的业绩同比大增达183.1%。
美国调研咨询机构Frost&Sullivan的统计显示, 按照2020年的销售额排名,晶合集成已成为中国大陆收入第三大的晶圆代工企业,仅次于中芯国际和华虹半导体。
值得注意,这一排名不包含在大陆设厂的外资控股企业,也不包含IDM半导体企业。
不过,相比业内可比公司的经营状况,晶合集成仍有不小差距。比如,2020年,中芯国际营收274.71亿元,华虹半导体营收62.72亿元,分别是晶合集成的18倍及4倍以上。
另一方面,晶合集成已经搭建了150nm至55nm制程的研发平台,涵盖DDIC(面板驱动)、CIS(图像传感器)、MCU(微控制)、PMIC(电源管理)、E-Tag(电子标签)、Mini LED及其他逻辑芯片等领域。
但公司的市场拓展及经营高度依赖DDIC晶圆代工服务,因而主营业务极为单一。
报告期内, 晶合集成DDIC晶圆代工服务收入,分别为2.18亿元、5.33亿元、14.84亿元,占主营业务收入比例分别为99.96%、99.99%、98.15%。
然而,正因如此,晶合集成预计,如果未来CIS和MCU等产品量产以及更先进制程落地,企业的收入和产能还有机会迎来新一波增长。
目前,晶合集成在12英寸晶圆代工量产方面已积累了比较成熟的经验,但工艺主要为150nm、110nm和90nm制程节点。
其中,90nm制程是业内DDIC类产品最为主流的制程之一,而提供90nm制程的DDIC产品服务也逐渐成为晶合集成的主营业务。
报告期内, 晶合集成90nm制程类产品收入年均复合增长率达652.15%,占营收比重从2018年6.52%逐年升至2020年的53.09%。 这一定程度上体现其收入结构正在优化。
此外,晶合集成正在进行55nm制程节点的12英寸晶圆代工平台研发,预计之后会在55nm制程产品研究中投入15.6亿元人民币,以推进先进制程的收入转化。
另据招股书透露,2021年,90nmCIS产品及110nmMCU产品将实现量产;55nm的触控与显示驱动整合芯片平台已与客户合作,计划在2021年10月量产。而55nm逻辑芯片平台预计于2021年12月开发完成,并导入客户流片。
基于此,晶合集成的企业版图未来确有望进一步扩充,而营业收入也势必会有不同程度的增加。
盈利毛利“满盘皆负”
虽然持续增收,但作为半导体行业新晋企业,晶合集成要实现盈利并不容易。由于设备采购投入过大,以及每年产生大量折旧费用等因素,晶合集成近年来净利润一直在亏损。
报告期内, 晶合集成归母净利润分别为-11.91亿元、- 12.43亿元和-12.58亿元。扣除非经常性损益后归母净利润分别为-12.54亿元、-13.48亿元和-12.33亿元,三年扣非净利润合计为-38.35亿元。
截至2020年12月31日, 公司经审计的未分配利润达-43.69亿元。
对此,在招股书中,晶合集成也做出“尚未盈利及存在累计未弥补亏损及持续亏损的风险”提示,并称“预计首次公开发行股票并上市后,公司短期内无法进行现金分红,对投资者的投资收益造成一定影响。”
另一方面,为满足产能扩充需求,晶合集成持续追加生产设备等资本性投入,折旧、 摊销等固定成本规模较高。这使得其在产销规模尚有限的情况下产品毛利率较低。
报告期各期, 晶合集成的产品综合毛利分别为-6.02亿元、-5.37亿元及-1.29亿元,综合毛利率则分别为-276.55%、-100.55%与-8.57%。
与行业可比公司相比,晶合集成的毛利率差距巨大,而且远低于可比公司毛利率的平均值。
值得一提,同期台积电的毛利率遥遥领先。而在大陆的半导体代工企业中,中芯国际及华润微的毛利率均低于平均值,仅有华虹半导体于2018年和2019年略高于平均值。
不过,随着产销规模逐步增长且规模效应使得单位成本快速下降,晶合集成的毛利率与可比公司均值的差距正在快速缩短。2020年,其综合毛利率已大幅改善至-8.57%。
与此同时,晶合集成各制程产品的毛利率也在持续改善。
招股书显示,2020年,公司150nm制程产品毛利已实现扭负为正,而110nm及150nm制程产品毛利率,相对优于90nm制程产品的毛利率。其主要原因为90nm制程产品工艺流程较为复杂,固定成本分摊比例较高。
晶合集成似乎对未来盈利很有信心,在招股书中称“主营业务毛利率虽然连年为负,但呈现快速改善趋势... 未来规模效应的增强有望使得公司盈利能力进一步改善。”
其实早在去年底,晶合集成就定下四大战略目标:即 在“十四五”开局之年,实现月产能达到10万片、科创板上市、三厂启动以及企业盈利。 不难看出其对实现盈利的重视。
但是,参考近三年利润总额和净利润,并未看出晶合集成的亏损有明显好转趋势。更有行业人士称,“由于每年设备折旧费用可能吃掉大部分利润,收回成本可能要历时数年。”
技术研发依赖“友商”
毋庸置疑,晶圆代工行业属于技术和资本密集型行业,除需大量资本运作外,对研发能力要求也极高。可以说,研发能力的强弱直接决定了企业的核心竞争力。
一般来说,半导体企业的研发能力,主要通过研发费用投入占总收入比例、研发人员占总人员比例、科研成果转化率等评判。
首先,在研发费用投入方面。近年来,尽管一直“入不敷出”,但晶合集成的研发投入总额依然保持着较快上涨。
报告期内, 公司研发费用分别为1.31亿元、1.70亿元及2.45亿元。 然而,鉴于营业额的更快速增长,其 研发投入占比则出现持续下滑,分别为60.28%、31.87%及16.18% 。
不过,目前晶合集成的研发费用率仍高于同行业的平均水平。这主要是因其处于快速发展阶段,收入规模较可比公司相对较低,但研发投入维持在较高强度。
其次,在研发人员投入方面。 报告期各期末, 晶合集成研发人员数量持续增长,分别为119人、207人和280人, 占员工总数比例分别为9.47%、15.16%和16.81%。
相比之下,截至2020年12月31日,中芯国际、华虹半导体、华润微研发人员分别为2335人、未知、697人,占总人员比例分别为13.5%、未知、7.7%。
由此可见,晶合集成的研发人员占比超过已知的中芯国际和华润微,但在研发人员总数量上仍逊色不少。
另招股书显示,晶合集成现有5名核心技术人员,分别为蔡辉嘉(总经理)、詹奕鹏(副总经理)、 邱显寰(副总经理)、张伟墐(N1 厂厂长)、李庆民(协理兼技术开发二处处长)。
然而,根据背景信息介绍, 5名核心技术人员全部为台湾籍人士,而且除了詹奕鹏外,其余4人均曾任职于力晶 科技 。 这说明晶合集成的核心技术研发极为依赖力晶 科技 。
另外,在科研成果转化方面。截至2020年12月31日, 晶合集成及其子公司拥有境内专利共计54项,境外专利共计44项, 形成主营业务收入的发明专利共71项 。
在行业可比公司方面,中芯国际仅2020年内便新增申请发明专利、实用新型专利、布图设计权总计991项,新增获得数1284项;累计申请数17973项,获得数12141项;
华虹半导体2020年申请专利576项,累计获得中美发明授权专利超过3600项;
华润微2020年已获授权并维持有效的专利共计1711项,其中境内专利1492项、境外专利219项。
可以看出, 中芯国际、华虹半导体、华润微拥有的专利均超过了1000项,大幅领先于不足百项的晶合集成。
当然,对成立较短的半导体企业来说,这是必然会遭遇的问题之一。但要加强技术专利的积累及实现追赶,晶合集成还有很长的路要走。
募资百亿转型多元化
近年来,随着全球信息化和数字化持续发展,新能源 汽车 、人工智能、消费及工业电子、移动通信、物联网、云计算等新兴领域的快速成长,带动了全球集成电路和晶圆代工行业市场规模不断增长。
为抓住产业发展契机及进一步争取行业有力地位,晶合集成自2020开始便积极谋划在科创板上市,预计在2021年下半年完成。而这一时程较原计划提早了一年。
具体而言,本次科创板IPO, 晶合集成拟公开发行不超过约5.02亿股,占公司发行后总股本的比例不超过25%,同时计划募集资金120亿元。据此,公司估值为480亿元。
截至6月11日,科创板受理企业总数已达575家,其中仅9家公司拟募资超过100亿元。也就是说,晶合集成的募资规模已进入科创板受理企业前十。
在用途方面,公司的募集资金将全部投入12英寸晶圆制造二厂项目。该 项目总投资约为165亿元,其中建设投资为155亿元,流动资金为10亿元。
如果募集资金不足以满足全部投资,晶合集成计划通过银行融资等方式获取补足资金缺口。
根据规划,二厂项目将建设一条产能为4万片/月的12英寸晶圆代工生产线。其中,产品包括电源管理芯片(PMIC)、显示驱动整合芯片(DDIC)、CMOS图像传感芯片(CIS)等,主要面向物联网、 汽车 电子、5G等创新应用领域。
在图像传感器技术方面,晶合集成目前已完成第一阶段90nm图像传感器技术的开发,未来将进一步将图像传感器技术推进至55nm,并于二厂导入量产;
在电源管理芯片技术方面,晶合集成计划在现有90nm技术平台基础上进一步开发BCD工艺平台,辅以IP验证、模型验证、模拟仿真等构建90nm电源管理芯片平台,并于二厂导入量产;
在显示面板驱动芯片方面,晶合集成已在现有的90nm触控与显示驱动芯片平台基础上进一步提升工艺制程能力,将技术节点推进至55nm。
招股书显示,12英寸晶圆制造二厂的项目进度为:2021年3月,洁净室开始装设;8月,土建及机电安装完成及工艺设备开始搬入;12月,达到3万片/月的产能。
此外,2022年3月,即项目启动建设一周年,达到3万片/月的满载产能。同年, 晶合集成还将装设一条40nmOLED显示驱动芯片微生产线。
未来,随着项目逐步推进建设及产能落地,晶合集成将继续坚持当前的战略规划:
依托合肥平板显示、 汽车 电子、家用电器等产业优势,结合不同产业发展趋势及产品需求,形成显示驱动、图像传感、微控制器、电源管理(“显 像 微 电”)四大特色工艺的产品线。
结语
依托台湾技术团队及合肥的国有资本等,晶合集成成立仅五年就成为了全球重要的显示面板驱动芯片代工厂商,并且剑指显示器驱动芯片代工市占率第一桂冠。
这样的成就对国内半导体企业来说,实属难能可贵。但长年押宝在“一根稻草”上,晶合集成的经营发展无疑潜在较多重大风险。同时,行业的激烈竞争及国际形势变化等外部压力也越来越大。
晶合集成董事长蔡国智,2020年上任,曾在宏碁股份、力晶 科技 和力积电等公司任职。
对此,晶合集成近年来正致力于推动企业转型,并制定了详细的三年发展计划。2020年7月,晶合集成董事长蔡国智接受问芯Voice采访时,曾透露了公司的具体战略规划:
2021年:目标是营收要倍增至30亿,公司必须开始获利赚钱,同时要完成N2建厂、产品多元化以及科创板IPO上市;
2022年:目标是N2厂正式进入量产阶段,公司营收突破50亿元大关,并维持稳定获利;
2023年:目标是单月产能要达到7.5万片,公司营收达70亿,并且开始规划N3和N4厂房的建设。
但在清晰的目标背后,晶合集成不可避免的面临一系列挑战。
比如现阶段半导体代工行业“马太效应”愈发明显,晶合集成要如何扭转劣势或突围?在现有企业规模及相关储备下,其多元化战略是否还能顺利推进并攻下市场?
此外,由于客户主要在境外,公司要如何真正提高关键国产芯片的自给率?
基于此,即便科创板上市成功,晶合集成还需要克服诸多问题及困难,其中包括改善盈利、升级工艺、募集资本、招揽人才、推进多元化及应对行业竞争等等。
至于本次募资的12英寸晶圆代工项目是否能达到预期业绩,以及相关战略未来是否能卓有成效落地,从而改善当前的系列问题,促使晶合集成进一步壮大乃至真正崛起,且拭目以待!
先进的芯片尺寸封装(CSP)技术及其发展前景2007/4/20/19:53 来源:微电子封装技术
汽车电子装置和其他消费类电子产品的飞速发展,微电子封装技术面临着电子产品“高性价比、高可靠性、多功能、小型化及低成本”发展趋势带来的挑战和机遇。QFP(四边引脚扁平封装)、TQFP(塑料四边引脚扁平封装)作为表面安装技术(SMT)的主流封装形式一直受到业界的青睐,但当它们在0.3mm引脚间距极限下进行封装、贴装、焊接更多的I/O引脚的VLSI时遇到了难以克服的困难,尤其是在批量生产的情况下,成品率将大幅下降。因此以面阵列、球形凸点为I/O的BGA(球栅阵列)应运而生,以它为基础继而又发展为芯片尺寸封装(ChipScalePackage,简称CSP)技术。采用新型的CSP技术可以确保VLSI在高性能、高可靠性的前提下实现芯片的最小尺寸封装(接近裸芯片的尺寸),而相对成本却更低,因此符合电子产品小型化的发展潮流,是极具市场竞争力的高密度封装形式。
CSP技术的出现为以裸芯片安装为基础的先进封装技术的发展,如多芯片组件(MCM)、芯片直接安装(DCA),注入了新的活力,拓宽了高性能、高密度封装的研发思路。在MCM技术面临裸芯片难以储运、测试、老化筛选等问题时,CSP技术使这种高密度封装设计柳暗花明。
2CSP技术的特点及分类
2.1CSP之特点
根据J-STD-012标准的定义,CSP是指封装尺寸不超过裸芯片1.2倍的一种先进的封装形式[1]。CSP实际上是在原有芯片封装技术尤其是BGA小型化过程中形成的,有人称之为μBGA(微型球栅阵列,现在仅将它划为CSP的一种形式),因此它自然地具有BGA封装技术的许多优点。
(1)封装尺寸小,可满足高密封装CSP是目前体积最小的VLSI封装之一,引脚数(I/O数)相同的CSP封装与QFP、BGA尺寸比较情况见表1[2]。
由表1可见,封装引脚数越多的CSP尺寸远比传统封装形式小,易于实现高密度封装,在IC规模不断扩大的情况下,竞争优势十分明显,因而已经引起了IC制造业界的关注。
一般地,CSP封装面积不到0.5mm节距QFP的1/10,只有BGA的1/3~1/10[3]。在各种相同尺寸的芯片封装中,CSP可容纳的引脚数最多,适宜进行多引脚数封装,甚至可以应用在I/O数超过2000的高性能芯片上。例如,引脚节距为0.5mm,封装尺寸为40×40的QFP,引脚数最多为304根,若要增加引脚数,只能减小引脚节距,但在传统工艺条件下,QFP难以突破0.3mm的技术极限;与CSP相提并论的是BGA封装,它的引脚数可达600~1000根,但值得重视的是,在引脚数相同的情况下,CSP的组装远比BGA容易。
(2)电学性能优良CSP的内部布线长度(仅为0.8~1.0mm)比QFP或BGA的布线长度短得多[4],寄生引线电容(<0.001mΩ)、引线电阻(<0.001nH)及引线电感(<0.001pF)均很小,从而使信号传输延迟大为缩短。CSP的存取时间比QFP或BGA短1/5~1/6左右,同时CSP的抗噪能力强,开关噪声只有DIP(双列直插式封装)的1/2。这些主要电学性能指标已经接近裸芯片的水平,在时钟频率已超过双G的高速通信领域,LSI芯片的CSP将是十分理想的选择。
(3)测试、筛选、老化容易MCM技术是当今最高效、最先进的高密度封装之一,其技术核心是采用裸芯片安装,优点是无内部芯片封装延迟及大幅度提高了组件封装密度,因此未来市场令人乐观。但它的裸芯片测试、筛选、老化问题至今尚未解决,合格裸芯片的获得比较困难,导致成品率相当低,制造成本很高[4];而CSP则可进行全面老化、筛选、测试,并且 *** 作、修整方便,能获得真正的KGD芯片,在目前情况下用CSP替代裸芯片安装势在必行。
(4)散热性能优良CSP封装通过焊球与PCB连接,由于接触面积大,所以芯片在运行时所产生的热量可以很容易地传导到PCB上并散发出去;而传统的TSOP(薄型小外形封装)方式中,芯片是通过引脚焊在PCB上的,焊点和pcb板的接触面积小,使芯片向PCB板散热就相对困难。测试结果表明,通过传导方式的散热量可占到80%以上。
同时,CSP芯片正面向下安装,可以从背面散热,且散热效果良好,10mm×10mmCSP的热阻为35℃/W,而TSOP、QFP的热阻则可达40℃/W。若通过散热片强制冷却,CSP的热阻可降低到4.2,而QFP的则为11.8[3]。
(5)封装内无需填料大多数CSP封装中凸点和热塑性粘合剂的d性很好,不会因晶片与基底热膨胀系数不同而造成应力,因此也就不必在底部填料(underfill),省去了填料时间和填料费用[5],这在传统的SMT封装中是不可能的。
(6)制造工艺、设备的兼容性好CSP与现有的SMT工艺和基础设备的兼容性好,而且它的引脚间距完全符合当前使用的SMT标准(0.5~1mm),无需对PCB进行专门设计,而且组装容易,因此完全可以利用现有的半导体工艺设备、组装技术组织生产。
2.2CSP的基本结构及分类
CSP的结构主要有4部分:IC芯片,互连层,焊球(或凸点、焊柱),保护层。互连层是通过载带自动焊接(TAB)、引线键合(WB)、倒装芯片(FC)等方法来实现芯片与焊球(或凸点、焊柱)之间内部连接的,是CSP封装的关键组成部分。CSP的典型结构如图1所示[6]。
目前全球有50多家IC厂商生产各种结构的CSP产品。根据目前各厂商的开发情况,可将CSP封装分为下列5种主要类别[7、3]:
(1)柔性基板封装(FlexCircuitInterposer)由美国Tessera公司开发的这类CSP封装的基本结构如图2所示。主要由IC芯片、载带(柔性体)、粘接层、凸点(铜/镍)等构成。载带是用聚酰亚胺和铜箔组成。它的主要特点是结构简单,可靠性高,安装方便,可利用原有的TAB(TapeAutomatedBonding)设备焊接。
(2)刚性基板封装(RigidSubstrateInterposer)由日本Toshiba公司开发的这类CSP封装,实际上就是一种陶瓷基板薄型封装,其基本结构见图3。它主要由芯片、氧化铝(Al2O3)基板、铜(Au)凸点和树脂构成。通过倒装焊、树脂填充和打印3个步骤完成。它的封装效率(芯片与基板面积之比)可达到75%,是相同尺寸的TQFP的2.5倍。
(3)引线框架式CSP封装(CustomLeadFrame)由日本Fujitsu公司开发的此类CSP封装基本结构如图4所示。它分为Tape-LOC和MF-LOC
两种形式,将芯片安装在引线框架上,引线框架作为外引脚,因此不需要制作焊料凸点,可实现芯片与外部的互连。它通常分为Tape-LOC和MF-LOC两种形式。
(4)圆片级CSP封装(Wafer-LevelPackage)由ChipScale公司开发的此类封装见图5。它是在圆片前道工序完成后,直接对圆片利用半导体工艺进行后续组件封装,利用划片槽构造周边互连,再切割分离成单个器件。WLP主要包括两项关键技术即再分布技术和凸焊点制作技术。它有以下特点:①相当于裸片大小的小型组件(在最后工序切割分片);②以圆片为单位的加工成本(圆片成本率同步成本);③加工精度高(由于圆片的平坦性、精度的稳定性)。
(5)微小模塑型CSP(MinuteMold)由日本三菱电机公司开发的CSP结构如图6所示。它主要由IC芯片、模塑的树脂和凸点等构成。芯片上的焊区通过在芯片上的金属布线与凸点实现互连,整个芯片浇铸在树脂上,只留下外部触点。这种结构可实现很高的引脚数,有利于提高芯片的电学性能、减少封装尺寸、提高可靠性,完全可以满足储存器、高频器件和逻辑器件的高I/O数需求。同时由于它无引线框架和焊丝等,体积特别小,提高了封装效率。
除以上列举的5类封装结构外,还有许多符合CSP定义的封装结构形式如μBGA、焊区阵列CSP、叠层型CSP(一种多芯片三维封装)等。
3CSP封装技术展望
3.1有待进一步研究解决的问题
尽管CSP具有众多的优点,但作为一种新型的封装技术,难免还存在着一些不完善之处。
(1)标准化每个公司都有自己的发展战略,任何新技术都会存在标准化不够的问题。尤其当各种不同形式的CSP融入成熟产品中时,标准化是一个极大的障碍[8]。例如对于不同尺寸的芯片,目前有多种CSP形式在开发,因此组装厂商要有不同的管座和载体等各种基础材料来支撑,由于器件品种多,对材料的要求也多种多样,导致技术上的灵活性很差。另外没有统一的可靠性数据也是一个突出的问题。CSP要获得市场准入,生产厂商必须提供可靠性数据,以尽快制订相应的标准。CSP迫切需要标准化,设计人员都希望封装有统一的规格,而不必进行个体设计。为了实现这一目标,器件必须规范外型尺寸、电特性参数和引脚面积等,只有采用全球通行的封装标准,它的效果才最理想[9]。
(2)可靠性可靠性测试已经成为微电子产品设计和制造一个重要环节。CSP常常应用在VLSI芯片的制备中,返修成本比低端的QFP要高,CSP的系统可靠性要比采用传统的SMT封装更敏感,因此可靠性问题至关重要。虽然汽车及工业电子产品对封装要求不高,但要能适应恶劣的环境,例如在高温、高湿下工作,可靠性就是一个主要问题。另外,随着新材料、新工艺的应用,传统的可靠性定义、标准及质量保证体系已不能完全适用于CSP开发与制造,需要有新的、系统的方法来确保CSP的质量和可靠性,例如采用可靠性设计、过程控制、专用环境加速试验、可信度分析预测等。
可以说,可靠性问题的有效解决将是CSP成功的关键所在[10,11]。
(3)成本价格始终是影响产品(尤其是低端产品)市场竞争力的最敏感因素之一。尽管从长远来看,更小更薄、高性价比的CSP封装成本比其他封装每年下降幅度要大,但在短期内攻克成本这个障碍仍是一个较大的挑战[10]。
目前CSP是价格比较高,其高密度光板的可用性、测试隐藏的焊接点所存在的困难(必须借助于X射线机)、对返修技术的生疏、生产批量大小以及涉及局部修改的问题,都影响了产品系统级的价格比常规的BGA器件或TSOP/TSSOP/SSOP器件成本要高。但是随着技术的发展、设备的改进,价格将会不断下降。目前许多制造商正在积极采取措施降低CSP价格以满足日益增长的市场需求。
随着便携产品小型化、OEM(初始设备制造)厂商组装能力的提高及硅片工艺成本的不断下降,圆片级CSP封装又是在晶圆片上进行的,因而在成本方面具有较强的竞争力,是最具价格优势的CSP封装形式,并将最终成为性能价格比最高的封装。
此外,还存在着如何与CSP配套的一系列问题,如细节距、多引脚的PWB微孔板技术与设备开发、CSP在板上的通用安装技术[12]等,也是目前CSP厂商迫切需要解决的难题。
3.2CSP的未来发展趋势
(1)技术走向终端产品的尺寸会影响便携式产品的市场同时也驱动着CSP的市场。要为用户提供性能最高和尺寸最小的产品,CSP是最佳的封装形式。顺应电子产品小型化发展的的潮流,IC制造商正致力于开发0.3mm甚至更小的、尤其是具有尽可能多I/O数的CSP产品。据美国半导体工业协会预测,目前CSP最小节距相当于2010年时的BGA水平(0.50mm),而2010年的CSP最小节距相当于目前的倒装芯片(0.25mm)水平。
由于现有封装形式的优点各有千秋,实现各种封装的优势互补及资源有效整合是目前可以采用的快速、低成本的提高IC产品性能的一条途径。例如在同一块PWB上根据需要同时纳入SMT、DCA,BGA,CSP封装形式(如EPOC技术)。目前这种混合技术正在受到重视,国外一些结构正就此开展深入研究。
对高性价比的追求是圆片级CSP被广泛运用的驱动力。近年来WLP封装因其寄生参数小、性能高且尺寸更小(己接近芯片本身尺寸)、成本不断下降的优势,越来越受到业界的重视。WLP从晶圆片开始到做出器件,整个工艺流程一起完成,并可利用现有的标准SMT设备,生产计划和生产的组织可以做到最优化;硅加工工艺和封装测试可以在硅片生产线上进行而不必把晶圆送到别的地方去进行封装测试;测试可以在切割CSP封装产品之前一次完成,因而节省了测试的开支。总之,WLP成为未来CSP的主流已是大势所驱[13~15]。
(2)应用领域CSP封装拥有众多TSOP和BGA封装所无法比拟的优点,它代表了微小型封装技术发展的方向。一方面,CSP将继续巩固在存储器(如闪存、SRAM和高速DRAM)中应用并成为高性能内存封装的主流;另一方面会逐步开拓新的应用领域,尤其在网络、数字信号处理器(DSP)、混合信号和RF领域、专用集成电路(ASIC)、微控制器、电子显示屏等方面将会大有作为,例如受数字化技术驱动,便携产品厂商正在扩大CSP在DSP中的应用,美国TI公司生产的CSP封装DSP产品目前已达到90%以上。
此外,CSP在无源器件的应用也正在受到重视,研究表明,CSP的电阻、电容网络由于减少了焊接连接数,封装尺寸大大减小,且可靠性明显得到改善。
(3)市场预测CSP技术刚形成时产量很小,1998年才进入批量生产,但近两年的发展势头则今非昔比,2002年的销售收入已达10.95亿美元,占到IC市场的5%左右。国外权威机构“ElectronicTrendPublications”预测,全球CSP的市场需求量年内将达到64.81亿枚,2004年为88.71亿枚,2005年将突破百亿枚大关,达103.73亿枚,2006年更可望增加到126.71亿枚。尤其在存储器方面应用更快,预计年增长幅度将高达54.9%。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)