1、半导体的导电能力与导体并不相同,两者对比的话,半导体导电能力比导体导电能力弱,不过比绝缘体导电性能强。在能带结构模型中,金属的电导率由费米能级附近电子的迁移率决定。半导体的电导率由价带顶部附近的空穴和导带底部的电子的共同迁移率决定。
2、电子和空穴的有效质量不相等,同一能带的电子和空穴的有效质量相等我的意思是导带电子的有效质量不等于价带空穴的有效质量,所以两者的电导率要分开讨论。半导体的导电性比导体弱,半导体只在熔融状态下导电。
3、当机械温度为零时,理论上价带中的电子占据所有位置。在外部电场的作用下,不会发生位置偏移,也不会产生电流。在禁带中,没有电子,也不会产生电流。理论上,电流产生取决于导带。半导体的导带中没有电子。当价带中的电子吸收能量时,就会跃迁到导带。价带中也会有空穴。在外部电场的情况下,它们将转变为导带中的电子和价带中的电子。
4、导体中的价带电子不是全能带,它们在外场的作用下直接产生电流。以上是一个简单的概念。半导体中的电子空穴传导和导电金属中的电子传导的根本区别,不考虑缺陷等的影响。对于理想的材料,电导率取决于电导率涉及的数量和迁移率。所以很容易观察半导体和金属的导电性。
5、参与传导的载流子数量包括电子和空穴。一般来说,金属的载流子远远多于半导体,尤其是这个证书的导体。金属是电子导电的,具有低质量和高迁移率,而半导体具有低空穴迁移率。
半导体和金属导体的导电机理的不同有:半导体中有自由电子和空穴两种承载电流的粒子,使半导体导电;金属导体内部存在大量的可以自由移动的自由电子,这些自由电子在电场力的作用下定向移动而形成电流,使金属能够导电。离子晶体不导电,熔化或溶于水后能导电。离子晶体中,离子键较强,离子不能自由移动,即晶体中无自由移动的离子,因此离子晶体不导电。离子化合物溶于水时,阴、阳离子受到水分子的作用后变成了自由移动的离子(或水合离子),在外界电场作用下,阴、阳离子定向移动而导电。
一:经典自由电子理论金属电子被束缚能较低,可以在金属中自由移动.所以加了电压就可以导电. 而半导体是以共价键形式存在,原子核对最外层电子的束缚较强,所以电子不可以随意移动.但是由于半导体是体材料,所以有好多的原子就在一起,那么他们的电子壳层就交叠在一起了.如图,那么电子就可以在这些交叠的轨道上运动了,于是也可以导电.
二:量子自由电子理论
这其实半导体和金属都是运用薛定谔的方程,再根据边界条件的值求解能量表达.他们的共同点是大都在纳米量级下才能观察到能量的量子化效应.比方说,普通金属在体材料即大块的时刻,有良好的导电导热性能,但是在纳米颗粒情况下就会绝缘.半导体的量子化可以有量子阱,量子线,量子点等.这些情况下其能级发生分离,不再是连续的.
三:能带理论
这也是区别半导体和金属的比较易理解的方式.首先晶体中电子的分布要满足一定的波函数,而波函数也随这晶格周期性的变化.最终得到电子的分布空间是一些带.带和带之间时禁带,即不能存在电子.晶体能够导电是其中的电子在外电场的作用下做定向运动.电子在外电场下做加速运动,于是电子的能量就发生改变.从而电子从能量较低的带跃迁到高的带.半导体,就是能量较低的带里全部填充电子,能量高的带没有电子,因为满所以就好比大家在一起挤着不能动,那么就没有电流.但是有了外力,电子就跃迁,满的地方就空出位置,从而让旁边的电子移动,从而形成电流.金属的较高地方也有电子那么较高的能带上就有电子有空位(空穴),所以何时都能导电.
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)