而半导体纳米材料的光催化特性就是源自于半导体材料会吸收光能,电子跃迁到高能态上。但仅仅如此还不能产生催化的效果。纳米的尺度也是至关重要的,纳米的尺度主要为其提供了一下性质:1、为材料提供了巨大的比表面积,可以让它与被催化的物质有充分的接触面积,提高催化的效率;2、纳米尺度带来的量子限域效应,使得电子被激发起来以后,与空穴形成的“载流子对”无法被分散,相当于把能量集中在了纳米尺寸的范围之内,提高了纳米材料表面的能量密度;3、纳米材料由于巨大的表面张力的存在,表面能非常高。这些因素就使得被催化的物质不仅可以大量吸附于纳米材料之上,且当纳米材料被光激发时,能量可以很方便地被传递到被催化物上。半导体纳米材料先吸收光能,电子发生跃迁、与空穴分离,在电子跃迁回基态的过程中释放出能量,这部分能量可以有效传递给吸附于纳米材料表面的待催化物质,这样那些待催化的物质就获得了能量,称为“敏化”。被敏化以后,原本难以发生的反应就会由于获得了更高的能量而变得容易起来。这就实现了光催化。
荧光是由于受激发,能量释放的一种途径,半导体材料分U和N型半导体,纳米微粒制备中由于条件不一样,晶核生长也不一样,微粒的晶型会有很大区别,或者哪一类晶型占主要,这个也是不一样的,所以纳米实验一定要有可重复性,另外,纳米颗粒粒径的大小也会影响荧光颜色,这个就是缺陷和空穴之类的原因,你可以看看jacs里面的文献,有做GeSe类的,基本的色彩都做出来了,主要是掺杂的物质和量,但是粒径也需要考虑的。欢迎分享,转载请注明来源:内存溢出
评论列表(0条)