一种量度数据分布的分散程度的标准,用以衡量数据值偏离算术平均值的程度。标准偏差越小,这些值偏离平均值就越少,反之亦然。标准偏差的大小可通过标准偏差与平均值的倍率关系来衡量。
标准偏差公式:S = Sqr[∑(xn-x平均)^2 /(n-1)]
Sqr……开平方,^……平方
2、相对标准偏差(RSD、Relative Standard Deviation)
相对标准偏差就是指:标准偏差与测量结果算术平均值的比值,用公式表示如下
RSD=SD/X,其中S为标准偏差,X为测量平均值
3、加标回收率
加标回收实验是化学分析中常用的实验方法,也是重要的质控手段,回收率是判定分析结果准确度的量化指标。加标实验及回收率的计算并不复杂,加标方式可根据不同项目、不同分析方法和不同的需要灵活掌握,回收率的计算也各不相同,因此文献[1 ]只给出回收率(记作R) 计算的定义公式:
R = 加标试样测定值 - 试样测定值/加标量×100 %分析化学
呵呵,具体加标回收率的 *** 作 由于文字太多 就不贴出来了,再说也不知道对你到底是否有用。
如果有用的话,可以去下面的网址查看具体 *** 作
http://hi.baidu.com/yyx520/blog/item/5b2560f731afb827730eec6d.html
1 列表法
将实验数据按一定规律用列表方式表达出来是记录和处理实验数据最常用的方法。表格的设计要求对应关系清楚、简单明了、有利于发现相关量之间的物理关系;此外还要求在标题栏中注明物理量名称、符号、数量级和单位等;根据需要还可以列出除原始数据以外的计算栏目和统计栏目等。最后还要求写明表格名称、主要测量仪器的型号、量程和准确度等级、有关环境条件参数如温度、湿度等。
本课程中的许多实验已列出数据表格可供参考,有一些实验的数据表格需要自己设计,表1.7—1是一个数据表格的实例,供参考。
表1.7—1 数据表格实例
杨氏模量实验增减砝码时,相应的镜尺读数
2 作图法
作图法可以最醒目地表达物理量间的变化关系。从图线上还可以简便求出实验需要的某些结果(如直线的斜率和截距值等),读出没有进行观测的对应点(内插法),或在一定条件下从图线的延伸部分读到测量范围以外的对应点(外推法)。此外,还可以把某些复杂的函数关系,通过一定的变换用直线图表示出来。例如半导体热敏电阻的电阻与温度关系为,取对数后得到,若用半对数坐标纸,以lgR为纵轴,以1/T为横轴画图,则为一条直线。
要特别注意的是,实验作图不是示意图,而是用图来表达实验中得到的物理量间的关系,同
时还要反映出测量的准确程度,所以必须满足一定的作图要求。
1)作图要求
(1)作图必须用坐标纸。按需要可以选用毫米方格纸、半对数坐标纸、对数坐标纸或极坐标纸等。
(2)选坐标轴。以横轴代表自变量,纵轴代表因变量,在轴的中部注明物理量的名称符号及其单位,单位加括号。
(3)确定坐标分度。坐标分度要保证图上观测点的坐标读数的有效数字位数与实验数据的有效数字位数相同。例如,对于直接测量的物理量,轴上最小格的标度可与测量仪器的最小刻度相同。两轴的交点不一定从零开始,一般可取比数据最小值再小一些的整数开始标值,要尽量使图线占据图纸的大部分,不偏于一角或一边。对每个坐标轴,在相隔一定距离下用整齐的数字注明分度(参阅图1.7—1)。
(4)描点和连曲线。根据实验数据用削尖的硬铅笔在图上描点,点子可用“+”、“×”、“⊙”等符号表示,符号在图上的大小应与该两物理量的不确定度大小相当。点子要清晰,不能用图线盖过点子。连线时要纵观所有数据点的变化趋势,用曲线板连出光滑而细的曲线(如系直线可用直尺),连线不能通过的偏差较大的那些观测点,应均匀地分布于图线的两侧。
(5)写图名和图注。在图纸的上部空旷处写出图名和实验条件等。此外,还有一种校正图线,例如用准确度级别高的电表校准低级别的电表。这种图要附在被校正的仪表上作为示值的修正。作校正图除连线方法与上述作图要求不同外,其余均同。校正图的相邻数据点间用直线连接,全图成为不光滑的折线(见图1.7—1)。这是因为不知两个校正点之间的变化关系而用线性插入法作的近似处理。
图1.7—1 校准曲线图示例
2)作图举例
表1.7—2所列数据是测量约利秤d簧伸长与受力的关系。测量d簧长度使用带有0.1mm游标的米尺。加外力使用的是5个200mg的4级砝码,其误差限很小,对测量结果的不确定度的影响可以忽略。
表1.7
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)