华为芯片尝试“换道超车”,对芯片堆叠展开探索,这项芯片堆叠技术可行吗?

华为芯片尝试“换道超车”,对芯片堆叠展开探索,这项芯片堆叠技术可行吗?,第1张

华为芯片尝试换道超车,对芯片堆积展开探索,这项芯片堆积技术是很有可行性的,目前台积电、三星、英特尔都已经正在跟进,它能够使得和芯片性能大大提升,不过要安装在容积较大的设备当中。

芯片领域华为也下足了苦功夫,自己研究芯片十几年都得益于其旗下的一个海思半导体部门,而从这个部门当中可以获得许多智能等领域的芯片成果,我们都知道海思它只是一个设计芯片的部门并不具备制造能力,所以目前正在尝试弯道超车,想要运用芯片堆叠的技术来实现去西方卡脖子的现状。在芯片设计能力方面海思在全球可以说也有一席之地,因为他独立完成了5G 麒麟9000的研发,同时在片堆叠技术当中,华为总部希望该部门能够再接再厉为弯道超车提供一个更大的方向。

华为芯片尝试弯道超车,对芯片堆叠展开探索和芯片堆叠技术是很有可行性的,能够很大程度提高芯片的使用性能,但是其中最重要的是芯片的封装工艺。

所谓的芯片堆叠其实就是很简单,将两颗芯片堆放在一起进行使用,但是它会牺牲一部分芯片的面积,想要在智能手机上使用有一点,因为其需要更大的容积,在芯片封装工艺方面,台积电做的比较好,而且技术也十分先进,其对十纳米以下芯片进行封装已经达到了完美的级别,目前正在英伟达进行合作。华为尝试换道超车,芯片堆叠技术很有可行性,而且也将成为未来的趋势。

目前三星和台积电都在探索芯片三纳米级别,而三星已经实现了三纳米芯片的量,那么再往后几年大家共同探索的将是二纳米甚至是更高级的一纳米技术,上升一个层次将要运用更多的材料和技术,而且难度会更高,所以目前芯片堆叠技术能够适应现阶段科技的发展。希望我国的相关研发部门能够在芯片堆叠技术方面有很大成果,同时在芯片研发制造方面也不负国人所望。

在过去几年里,“缺芯”是半导体行业的老大难,“扩产”则成了晶圆代工厂的常态。面对供应不足的行业现状,扩大产能、抢占市场成为了全球晶圆代工企业共同的选择。

先前半导体的技术竞赛,指的都是前段制程如何缩小尺寸,但现在几乎已达技术极限。据悉,半导体行业 游戏 规则正在改变,原本后段制程认为附加价值低,现在却和前段制程一样跻身热门领域;主要战场已移到后段制程,而不再是一味比线路的微细化了。

半导体若要功能更强、成本更低,就要另辟战场。这时候脱颖而出的就是后段工程的晶片3D封装技术,因可减少多余能源耗损,提高效率。例如讲究轻巧的智慧型手机、AR或VR用头盔等,都适合用到这种技术。此外,去年开始大家都在讲碳中和,也使这项技术高度受重视。日本半导体业者指出,原本节省能源就是非做不可的事,但3D封装技术现在变成最重要课题。

日本有多家企业拥有3D封装技术。材料方面包括昭和电工材料(前日立化成)、JSR、揖斐电(Ibiden)、新光电气工业等;制造设备有牛尾电机、佳能、迪斯科(Disco)、东京精密等,迪斯科和东京精密就独占半导体切割设备市场。这些企业及一些研究所和大学,都在台积电合作开发的名单内。

事实上,2020年秋季全球半导体大缺货时,电脑、 游戏 机等设备的后段工程材料就供不应求。当时揖斐电还为此决定投资1,800亿日圆增产高性能IC封装基板,预定2023年开始量产。业界人士透露,由于日本基板不足,曾导致部分外国半导体厂无法量产。

封装是指将完成前端工艺的晶圆切割成半导体的形状或对其进行布线。在业界,它也被称为“后段制程”。

尤其是英特尔和台积电等全球半导体巨头正在大举投资先进封装设备。根据市场研究公司 Yole Development 的数据,英特尔和台积电分别占据 2022 全球先进封装投资的公司 32% 和 27%。三星电子排名第四,仅次于台湾后端工艺公司 ASE。

英特尔已经在 2018 年推出了名为“Foveros”的 3D 封装品牌,并宣布将把这项技术应用到各种新产品中。它还设计了一种将每个区域组装成产品的方法,将其制作成tiles。2020 年发布的一款名为“Lakefield”的芯片就是采用这种方式制成的,并安装在三星电子的笔记本电脑中。

台积电最近也决定使用这项技术生产其最大客户 AMD 的最新产品。英特尔和台积电非常积极地在日本建立了一个 3D 封装研究中心,并从 6 月 24 日开始运营。

三星也在这个市场发力,在 2020 年推出了 3D 堆叠技术“X-Cube”。三星电子晶圆代工事业部总裁 Choi Si-young 在 Hot Chips 2021 上表示正在开发“3.5D 封装”去年六月。半导体行业的注意力为零,三星的这个工作组是否能够找到一种方法,使得三星与该领域的竞争对手保持领先。

随着前端节点越来越小,设计成本变得越来越重要。高级封装 (AP) 解决方案通过降低成本、提高系统性能、降低延迟、增加带宽和电源效率来帮助解决这些问题。

数据中心网络、高性能计算机和自动驾驶 汽车 正在推动高端性能封装的采用,以及从技术角度来看的演变。今天的趋势是在云、边缘计算和设备级别拥有更大的计算资源。因此,不断增长的需求正在推动高端高性能封装设备的采用。

半导体的发现实际上可以追溯到很久以前。

1833年,英国科学家电子学之父法拉第最先发现硫化银的电阻随着温度的变化情况不同于一般金属,一般情况下,金属的电阻随温度升高而增加,但巴拉迪发现硫化银材料的电阻是随着温度的上升而降低。这是半导体现象的首次发现。

不久,1839年法国的贝克莱尔发现半导体和电解质接触形成的结,在光照下会产生一个电压,这就是后来人们熟知的光生伏特效应,这是被发现的半导体的第二个特征。

1873年,英国的史密斯发现硒晶体材料在光照下电导增加的光电导效应,这是半导体又一个特有的性质。

半导体的这四个效应,(jianxia霍尔效应的余绩──四个伴生效应的发现)虽在1880年以前就先后被发现了,但半导体这个名词大概到1911年才被考尼白格和维斯首次使用。而总结出半导体的这四个特性一直到1947年12月才由贝尔实验室完成。

在1874年,德国的布劳恩观察到某些硫化物的电导与所加电场的方向有关,即它的导电有方向性,在它两端加一个正向电压,它是导通的;如果把电压极性反过来,它就不导电,这就是半导体的整流效应,也是半导体所特有的第三种特性。同年,舒斯特又发现了铜与氧化铜的整流效应。

扩展资料:

人物贡献:

1、英国科学家法拉第(MIChael Faraday,1791~1867)

在电磁学方面拥有许多贡献,但较不为人所知的,则是他在1833年发现的其中一种半导体材料。

硫化银,因为它的电阻随着温度上升而降低,当时只觉得这件事有些奇特,并没有激起太大的火花;

然而,今天我们已经知道,随着温度的提升,晶格震动越厉害,使得电阻增加,但对半导体而言,温度上升使自由载子的浓度增加,反而有助于导电,这也是半导体一个非常重要的物理性质。

2、德国的布劳恩(Ferdinand Braun,1850~1918)。

注意到硫化物的电导率与所加电压的方向有关,这就是半导体的整流作用。

但直到1906年,美国电机发明家匹卡(G. W. PICkard,1877~1956),才发明了第一个固态电子元件:无线电波侦测器(cat’s whisker),它使用金属与硅或硫化铅相接触所产生的整流功能,来侦测无线电波。

在整流理论方面,德国的萧特基(Walter Schottky,1886~1976)在1939年,于「德国物理学报」发表了一篇有关整流理论的重要论文,做了许多推论,他认为金属与半导体间有能障(potential barrier)的存在,其主要贡献就在于精确计算出这个能障的形状与宽度。

3、布洛赫(Felix BLOCh,1905~1983)

在这方面做出了重要的贡献,其定理是将电子波函数加上了周期性的项,首开能带理论的先河。

另一方面,德国人佩尔斯(Rudolf Peierls, 1907~ ) 于1929年,则指出一个几乎完全填满的能带,其电特性可以用一些带正电的电荷来解释,这就是电洞概念的滥觞;

他后来提出的微扰理论,解释了能隙(Energy gap)存在。

参考资料来源:百度百科-半导体


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/8979340.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-23
下一篇 2023-04-23

发表评论

登录后才能评论

评论列表(0条)

保存