半导体-电磁波波电效应灭活技术应用

半导体-电磁波波电效应灭活技术应用,第1张

半导体-电磁波波电效应灭活技术是一种全新微生物杀灭灭活技术,完全区别于现有紫外及化学试剂如八四消毒杀菌消毒(病毒灭活)技术,对于空气灭活来说,其工作时无须清理环境人群;

半导体-电磁波波电效应灭活技术可以应用于环境物理介质灭活、水质灭活、空气灭活等。空气灭活器的工作原理完全也不同于空气净化器,空气灭活器是将杀灭空气微生物作为主要工作目标,对于甲醛、硫化氢、氨气等有害气体也具备极强的无害化清除功能。对比空气净化器,空气灭活器并未将拦截类似PM2.5这类颗粒物作为工作的中心,当然这是为了加速空气交换,提高工作效率。

【注解】

1、什么是半导体-电磁波波电效应?

把不同禁带宽度的半导体在不同波长的电磁波作用下发生的伏特效应,比如光电效应(光生伏特效应)、热电效应(塞贝克效应)以及其他波段电磁波与半导体作用产生的电流或电子流的现象,我们称之为电磁波波电效应,或者电磁波波生伏特效应。

2、灭活是什么样的工作机理及过程

2.1 灭活基本过程基于两个层面

第一个层面是电磁波与半导体波电效应产生的电子流可以破坏有机物分子中原子与原子之间的化学键(通常为共价键),裂解这些包括但不仅仅限于蛋白质、氨基酸、核酸(病毒)等分子,比如打断有机物分子碳链等,小分子化或碎片化,从而达到消除其生物活性的目的。通常可以理解为类同其他非生命有机分子的降解作用类似,这个层面的作用与紫外杀灭类似,不同的是紫外杀灭是高能量光子Hv(μ)直接作用于分子的共价键,未经半导体进行光电转化为电子流而已,紫外灭杀过程,人需要离场,会对人体造成不可逆的伤害。

第二个层面是半导体电磁波波电效应作用于体系中的水分子,形成·OH和原子态的氧[O],其中·OH氧化能力仅次于自然界的氟F,具有很强的氧化能力,直接可以氧化含碳的有机分子,对于微生物直接可以进行细胞层面的氧化消解,病毒类则可以氧化DNA或RNA甚至有机物矿化(无机分子如CO2、NH3、N2、S、H2O),从而失去生物活性达到灭活的目的。

2.2 灭活过程

1) 半导体-电磁波波电效应灭活技术具有超强的杀菌及病毒灭活性能,杀灭流体如水、空气中细菌及病毒,对于以空气为传播介质的流行性病毒可以实现持续不间断的主动杀灭,半导体-电磁波波电效应空气灭活技术循环自动吸入并杀灭,一切工作在灭活器内部完成,与外界无关。这比紫外杀灭和消毒药剂的杀灭须隔离人员来说有很好的用户体验,对于急性流行性病毒传播及人流高频活动区域的实时杀菌灭活、消毒具有的意义是非同寻常的;

2) 不仅仅杀灭空气中的细菌、病毒等微生物,半导体-电磁波波电效应空气灭活技术光解产生的氢单质·H和H2在目前新型冠状肺炎的治疗中有得到正向评价,另外目前在众多基于氢气H2疗法对肝脏病、对脑血管病、对神经退行性疾病的治疗作用是令人欣喜的,氢气对大脑、脊髓、眼、耳、肺、心、肝、肾、胰腺、小肠、血管、肌肉、软骨、代谢系统、围产期疾病和炎症等均有积极的效应,包括对于诸如肿瘤等恶性疾病的氢疗法,屡屡获得新的技术突破,半导体-电磁波波解空气灭活技术这一技术应对当前的疫情将有极大的意义;

3) 半导体-电磁波波电效应空气灭活技术,在工作过程中将产生大量的·OH和[O],这是具备杀菌性能的根本,当然[O]+[O]=O2和·OH+·OH=H2+O2,所以在系统工作中会有大量的氧气产生并与携带光解半导体逸出的e形成负氧离子,使得空气变得清新。在灭活器工作中,由于·OH和[O]均是大比表面分散产生,并在主动空气循环工作,因此不会有大量的负氧离子和氧原子堆积形成显现的臭氧,半导体-电磁波波解空气灭活技术完全模拟了植物自然光合作用的原理释放氧气;

4) 半导体-电磁波波电效应空气灭活技术能够降解空气中的气体有机污染物如苯、甲醛和1,3-丁二烯(Butadiene)等碳氢化合物则直接氧化成二氧化碳和水;在一些空气污浊的场所,还可以将空气中的大分子气味物质小分子化,并最终氧化为简单的完全氧化物,从而达到清除异味的目的;

5)  采用半导体-电磁波波电效应空气灭活技术(氢加负氧离子)(Negative oxygen ion+Hydrogen)将对空气进行系统优化,可以设计为带现有空气过滤技术的产品和不带空气过滤两种类型产品,不带空气过滤的产品可以作为空气作为传播介质的细菌及病毒灭活,比如时下的冠状病毒空气杀灭。

3、 灭活的技术特点

1)具有释放氢单质即包括氢气及氢自由基(氢原子)的功能(优化空气);

2)具有释放氧单质即包括氢气及氧原子及羟基自由基的功能(优化空气);

3)具有强力杀菌及病毒灭活功能(安全空气);

4)具有清除空气有机气体污染的功能(净化污染);

5)具有清除空气无机气体污染的功能(净化污染);

6)具有消除空气中重金属离子的功能(清除污染);

7)依据空气污染物指标,可以选择是否集成空气过滤技术的功能(优化方案);

4、半导体

基因诊断的主要技术有核酸分子杂交、聚合酶链反应、恒温扩增、基因测序和生物芯片技术。 1.1 原理: 具有一定互补序列和核苷酸单链在液相或固相中按碱基互补配对原则缔合成异质双链的过程,称为核酸分子杂交。杂交的双方是待测核酸序列和探针序列。应用该技术可对特定DNA或RNA序列进行定性或定量检测。

1.2 基因探针及其标记: 基因探针是一段与待测DNA或RNA互补的核苷酸序列,可以是DNA或RNA,长度不一,可为完整基因,也可为其中一部分。根据探针的来源和性质分为基因组DNA探针、cDNA探针、RNA探针和人工合成的寡核苷酸探针。作为探针至少必须满足两个条件,一是应为单链(或通过变性形成单链),二是应带有可被示踪和检测的标记。有了合适的探针,就有可能检测出目的基因,观察有无突变,也可根据探针的结合量进行定量检测。选择探针最基本的原则是要有高度特异性,其次也需考虑到制备探针的难易性和检测手段的灵敏性等其他因素。

1.3 常用核酸分子杂交技术: ① Southern印迹杂交;② Northern印迹杂交;③斑点杂交(dot blotting);④原位杂交(in-situ hybridization);⑤夹心杂交(三明治杂交);⑥液相杂交。 恒温扩增技术主要包括链置换扩增法( strand displacement amplification , SDA) 、核酸序列扩增法( nucleic acid sequence-based amplification ,NASBA) 、转录介导扩增法( Transcription Mediated Amplification , TMA) 和滚环扩增法(RollingCircle Amplification ,RCA) 以及环介导等温扩增法(Loop-mediated isothermal amplification , LAMP)等。

LAMP是Notomi 等在2000 年开发的一种新颖的恒温核酸扩增方法,即环介导等温扩增法( loop-mediated isot hermalamplification , LAMP) ,其特点是针对靶基因的6 个区域设计4 种特异引物,利用一种链置换DNA 聚合酶(Bst DNA polymerase) 在等温条件(65 ℃左右) 保温几十分钟,即可完成核酸扩增反应。不需要模板的热变性、长时间温度循环、繁琐的电泳、紫外观察等过程。LAMP 是一种崭新的DNA 扩增方法,具有简单、快速、特异性强的特点,具有替代PCR 方法的可能性。 它们是DNA杂交 探针技术与半导体工业技术相结合的结晶。该技术系指将大量探针分子固定于支持物上后与带荧光标记的DNA样品分子进行杂交,通过检测每个探针分子的杂交信号强度进而获取样品分子的数量和序列信息。

生物芯片技术起源于核酸分子杂交。所谓生物芯片一般指高密度固定在互相支持介质上的生物信息分子(如基因片段、CDNA片段或多肽、蛋白质)的微阵列杂交型芯片(micro-arrays),阵列中每个分子的序列及位置都是已知的,并且是预先设定好的序列点阵。微流控芯片(microfluidic chips)和液态生物芯片是比微阵列芯片后发展的生物芯片新技术,生物芯片技术是系统生物技术的基本内容。

什么是生物芯片呢?简单说,生物芯片就是在一块玻璃片、硅片、尼龙膜等材料上放上生物样品,然后由一种仪器收集信号,用计算机分析数据结果。

人们可能很容易把生物芯片与电子芯片联系起来,虽然,生物芯片和电子芯片确实有着千丝万缕的联系,但它们是完全不同的两种东西。生物芯片并不等同于电子芯片,只是借用概念,它的原名叫“核酸微阵列”,因为它上面的反应是在交叉的纵列中所发生。

芯片的概念取之于集成的概念,如电子芯片的意思就是把大的东西变成小的东西,集成在一起。生物芯片也是集成,不过是生物材料的集成。像实验室检测一样,在生物芯片上检查血糖、蛋白、酶活性等,是基于同样的生物反应原理。所以生物芯片就是一个载体平台。这个平台的材料则有很多种,如硅,玻璃,膜(纤维素膜)等,还有一些三维结构的多聚体,平台上则密密麻麻地摆满了各种生物材料。芯片只是一个载体。做什么东西、检测什么,还是靠生物学家来完成。也就是说,原来要在很大的实验室中需要很多个试管的反应。

材料的电阻率界于金属与绝缘材料之间的材料。

1.对于集成电路来讲,最底下的一层叫衬底(一般为P型半导体),是参与集成电路工作的。拿cmos工艺来讲,N沟道mos的p型衬底都是连在一起的,都是同一个衬底。一般的电路中的绝缘体,只是一个载体,它起到支撑和绝缘的作用。

2.集成电路是一些电子元器件加连线构成,没有绝缘体充当绝缘和支撑。它通过加反偏和其他的技术来实现隔离(如器件二极管、三极管、场效应管)。

3.材料的电阻率界于金属与绝缘材料之间的材料。这种材料在某个温度范围内随温度升高而增加电荷载流子的浓度,电阻率下降。做芯片可能是应为半导体一般是4价材质的原因吧,参杂后可得P型半导体与N型半导体,将P型半导体与N型半导体制作在同一块硅片上,在它们的交界面就形成PN结。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/8981284.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-23
下一篇 2023-04-23

发表评论

登录后才能评论

评论列表(0条)

保存