大深传感创始人团队从欧姆龙辞职,回国创立DASS大深品牌,开始自主研发国产传感器,立志成为中国传感器的代名词!
深圳大深传感科技有限公司专注光电传感器产品研发及生产于一体, 主营产品包括槽型光电传感器、方型光电传感器、光纤传感器、接近传感器等系列 ,是目前国内少有完整掌握光电传感器核心技术的企业。
强大的研发能力是DASS大深传感器持续发展的坚实基础。我们引进专业的高端人才队伍,打造精准的研发管理体系。多年来始终坚持务实、创新、专业、真诚的理念,坚持技术创新,推动产品更新迭代!
大深每一款产品都凝聚着大深人的智慧和汗水,DASS大深从光电传感器进军市场,抓住产业链的细分环节,首创的漫反射零盲区检测技术,抗强光检测技术让光电传感器性能升级!应用范围更广泛!得到广大国内客户认可!
DASS大深传感一直在努力!立志要做中国本土自己的传感器产品,希望能新基建时代浪潮中与与传感器消费者互惠互利、共同进步,为传感器产业的蓬勃发展出一份力,为民族工业的振兴做出一份贡献!
CST设计环境™(CSTDE) CST仿真环境,所有CST工作室子软件均必须在此环境下方可运行,各个子软件可以在不同页面间快速切换 所有子软件共享统一数据格式,无需中间数据转换软件 包含前、后处理、优化器参数扫描器和材料库四大模块 支持32和64位Windows和LINUX *** 作系统,支持NvidiaGPU加速卡,每台单机支持1至8块卡 支持PBS/LSF/OGE等作业调度系统,同时提供CST自带的排队系统,支持多机冗余口令服务器 基于ACIS最新版内核的三维实体建模、交互式建模 支持各类导入格式:DXF、GDSII、Gerber、SAT、STL、IGES、STEP、Nastran、OBJ、Parasolid、SolidWorks、Solid Edge、Siemens NX、Autodesk Inventor、Pro/E、CATIA v4/v5、Cadence Allegro PCB/APD/SiP、Mentor Graphics Expedition/HyperLynx/PADs、Zuken CR5000/8000、ODB++、Agilent ADS、AWR icrowave Office、Sonnet、电磁热人体模型HUGO和CSTVoxel Family 二维/三维、电场/磁场、时域/频域监视器,各类电磁导出量后处理模板,曲线、切平面、三维矢量显示视图 拥有局部极值优化和全局最佳优化算法:插值准牛顿法、信赖域、Powell法、遗传算法、粒子群法、单纯形法、协方差矩阵自适应进化策略法(CMA-ES)等 支持多维多目标优化、历遍参数扫描、动态目标值显示 提供丰富的金属/非金属、铁磁、色散、非线性等高频介质等材料库:Arlon、Dupont、ECCOSORB、ESL、Gil、Rogers、Taconic厂家材料库
CST印制板工作室®(CSTPCBS) 专业印制板SI/PI/IR-Drop/眼图/去耦电容仿真优化软件 提供时域及频域仿真算法和仿真结果,主要应用于DC至高频频段的仿真 一键式频域PI、频域SI、时域SI、IR-Drop求解器,PDN谐振模式分析,任意去耦电容布局、自动目标阻抗优化 2DTL法、2.5DPEEC法和3D频域有限元法(FE-FD)提取Layout的准TEM波及全波分布参数SPICE网络模型 基于SPICE和IBIS模型快速仿真包含走线、无源RLC等器件、IC模块及非线性器件整板的信号完整性(SI)和器件上的电压电流(SI),并得出PCB板上电流幅相分布的近场源用于辐射仿真(CE/CS问题) 将上述得到的PCB近场源导入CST MWS,再加上PCB上其他三维器件和机壳结构,即可进行印制板加机壳等整个设备的电磁辐射仿真(RE问题)
CST电缆工作室®(CSTCS) 专业线缆线束SI、XTalk、EMI、EMS仿真软件 提供时域及频域仿真算法和仿真结果,主要应用于DC至高频频段的信号串扰、共模接地、线缆电磁辐射仿真 2D边界元法(BEM)提取线缆线束与周边环境耦合的等效电路分布参数网络模型 提供线缆转移阻抗模型,支持各类电缆线型,如单线、双绞线、屏蔽线、同轴线、捆扎线,各种线型的组合捆扎拓扑,自定义线型,蒙特卡罗随机捆扎信号统计分析 基于SPICE和IBIS模型快速仿真包含三维电缆走线、机箱机柜等三维结构、接插件、RLC等无源器件、IC模块及非线性器件等的整个线缆互连系统的信号完整性(SI)和线缆上的空间电流幅相分布(CE/CS问题) 含屏蔽线精简模型,支持单向和双向自洽线缆-电磁场耦合,给出线缆中任意信号下的电磁辐射结果(RE问题) 与MWS和DS无缝协同直接完成整个系统在受到电磁辐照时所有线缆上的瞬态或稳态感应电压和电流(RS问题) 可导入KBL(STEPAP2.12)国际标准线缆布局布线格式,也可在软件中自己构建线缆及其捆扎拓扑
CST规则检查™(BOARDCHECK) 专业级印制板布线的EMC和SI规则检查软件 内嵌大量的电磁兼容规则和信号完整性规则,用户可根据本企业特定的需求添加自定义规则至开放的规则库中 能对多层板中的信号线、地平面切割、电源平面分布、去耦电容分布、走线及过孔位置及分布进行快速检查 给出完整的、包含超链接的规则检查报告。只需点击报告中的链接,即可在印制板Layout视图中显示问题网络的位置 根据具体需要,可对整块印制板的所有网络(信号线和PDN网络)也可以对部分网络进行规则检查,可对全部规则或部分特定规则进行检查 规则库包含:信号线/参考面规则、连线/串扰规则、去耦电容规则、滤波器规则、晶振/时钟线规则、网络完整性规则、通孔完整性规则 支持各类通用EDA布局布线工具的Layout格式
CST多物理场®(CSTMPS) 由电磁损耗引起的热及由热引起的形变多物理场软件 三个求解器:瞬态和稳态热求解器、结构应力求解器,共享同一用户界面,无缝协同,自动数据识别和交换 支持六面体和四面体两类网格,支持有限积分和有限元 瞬态热求解器可以分析时域动态的加热、放热过程 计及生物新陈代谢热传导和人体体表面热对流 支持各向同性和各向异性热传导材料,温变材料 支持各类热源:设定边界温度、由CST MWS/EMS/PS得出的瞬态和稳态欧姆损耗及极化损耗场和粒子轰击损耗场 由热引起的热变形、位移、伸缩等结构应力仿真 典型应用范围:滤波器温度特性、高功率微波管收集极冷却、功率器件PCB板温度分布、感应加热温度分析、高频介质材料功率容量分析、相控阵天线一体化设计等 与CST MWS无缝协同,在同一用户界面下完成电磁-热-形变-电磁闭合仿真流程,支持全微分结构公差分析
CST微波工作室®(CSTMWS) CST公司旗舰产品,通用三维高频无源结构仿真软件 集时域和频域算法为一体,共含12种电磁算法,10种为精确全波算法,2种为高频渐近算法,分别是:时域有限积分、时域传输线矩阵、频域有限积分、频域有限元法、模式降阶、矩量法、ACA迭代矩量法、多层快速多极子、本征模法、多层平面矩量法、物理光学、d跳射线法 适用于整个电磁波和光波波段的电磁及电磁兼容仿真 内嵌基于统计电磁泄漏的精简模型,结合高效传输线矩阵TLM算法,特别适用于机箱机柜电磁兼容的仿真 拥有PBA®、TST、MSS专有技术可有效处理曲面、平面和共形有限厚度微带线、超大超小共存结构 支持三种网格类型:六面体、四面体、三角面元网格 支持特有的Octree八叉树子网技术,网格压缩率达90% 拥有一阶、二阶、三阶和混合阶有限元基函数 支持一阶、二阶、三阶及更高阶曲面元四面体共形网格 支持各类并行加速方法:多路多核、分布式、GPU加速卡、GPU+CPU、区域分解MPI、MPI+GPU组合加速 可仿真电尺寸从1、10、100、1000甚至10000以上结构 可仿真任意结构、任意材料下的S参数、辐射和散射问题 任意结构:金属和介质、凹凸结构、任意曲线、任意非线性样条曲面、微米级与米级尺度物体并存的结构、金属屏蔽丝网、搭接/通风板、导电膜/橡胶、多层涂敷等 任意介质及其分布:线性和非线性(介电常数非线性的Kerr/拉曼材料、磁导率非线性铁磁材料B-H曲线)、各向同性和异性、时变材料、温变材料、频变色散材料、含Debye/Drude/Lorentz色散模型和N阶实测色散曲线插值模型、激发等离子体(RF Plasma)、非饱和磁化铁氧体、表面阻抗、非光滑表面、欧姆表面、旋电旋磁材料、红外可见光波段材料属性等 典型应用范围:电磁兼容(HIRF/EMP/雷击/ESD)、天线天线阵和天线布局、RCS隐身/频选、高速互连SI/TDR、微波/光学无源器件、LTCC平面器件、手机SAR/HAC/TRP/DG、核磁共振MRI、非线性光学/等离子体激元等 可以直接导入Antenna Magus天线库的所有天线模型进行全波仿真、支持OptenniLab进行快速匹配电路设计 可以与CST DS联合进行场路无缝协同仿真:支持纯瞬态场路同步和频域场路异步协同仿真两种模式 支持与EMIT无缝协同进行载体收发信机干扰冗余度分析、与Agilent ADS无缝场路协同仿真、与Cadence无缝协同进行SiP及封装SI的场分析 内嵌优化器和参数扫描器、快速时域和频域算法公差灵敏度分析,支持结构形变下的全微分导数矩阵求解 拥有无需划分网格的精简模型库,专用于快速精确仿真机箱上细小散热缝阵、通风孔阵、搭接、屏蔽封条、燕尾槽、电缆通孔、导电薄膜、导电橡胶、屏蔽丝网、多层复合材料、碳纤维板等的电磁泄漏辐射和电磁屏蔽等电磁兼容问题,全波求解并支持转移阻抗模型 内嵌MIL-STD-464A或GJB1389激励信号,特别适用于GJB1389的系统级和GJB151A的设备级电磁兼容仿真
CST电磁工作室®(CSTEMS) 通用静场及低频无源结构电磁场仿真软件(DC-100MHz) 七个求解器:静电、静磁、稳恒电流、低频频域(准静电)、低频频域(准静磁)、低频频域(全波)、低频时域准静磁求解器,所有求解器共享同一用户界面 支持六面体和四面体两类网格,支持有限积分和有限元 支持各类激励源:电荷、电位、电压、永磁体、均匀磁化场、线包电流、稳恒电流分布、边界上和计算区域内的电流端口、电压端口 输出各类电磁量:电场D/E、磁场B/H、电位、电流、磁通、电荷三维和二维切平面分布、时域信号及其频谱 典型应用范围:工频/低频磁场/电场分析、电磁兼容、变压器、电磁铁、线性电机、无损探伤、感应加热、断路器、电磁力矩计算、分布参数RLCG电容/电感矩阵提取
CST粒子工作室®(CSTPS) 专业带电粒子与电磁场相互作用仿真软件,计及非线性空间电荷效应和粒子运动的相对论效应 包含四个求解器:电子q、粒子跟踪、自洽互作用(PIC)、加速尾场。所有求解器共享同一用户界面 多种粒子发射模型:固定能量、空间电荷限制流、温度限制流、场致发射、二次电子发射和爆炸发射等 粒子状态存储界面,用于分段仿真,提高仿真效率 支持多路多核并行、PIC和尾场支持GPU硬件加速卡 支持多重多频多模电场、磁场、电磁场的同时加载下带电粒子(离子或电子)与电磁场的相互自洽作用 典型应用范围:微放电、单注及多注螺旋线及耦合腔行波管和速调管增益和非线性谐波分析、磁控管振荡器调谐分析、正交场放大器、回旋管、磁束缚、粒子加速束流发射度、尾场、高功率微波源设计等
CST设计工作室™(CSTDS) 系统级有源及无源电路路仿真器 采用广义S参数矩阵和SPICE,基于电原理图进行仿真 支持直流工作点、时域、频域、谐波平衡、放大器仿真 内嵌多个器件厂商的半导体器件、电感、电容、线圈变压器的SPICE模型库,可以进行时域非线性电路和频域路仿真。支持标准SPICE3f4和PSPICE格式 内嵌各类微波传输线数值和解析模型:微带线、带状线、波导等,从传输线原理图直接生成三维实体传输线结构 与所有CST场仿真工作室无缝连接,完成场路协同仿真 支持参数化SPICE、IBIS、TOUCHSTONE模型导入 不但支持频域场路异步协同仿真,而且还支持纯瞬态场路同步协同仿真,直接将3D无源结构与电路同时仿真,计及3D结构电磁辐射对元器件输入阻抗的影响,如自激 可导入高频平面电路分析工具Sonnet em® Block模块 支持系统装配仿真System Assembly &Modeling – SAM
交换技术概述5.1.1基本概念
1.“交换”
“交换”即是在通信网大量的用户终端之间,根据用户通信的需要,在相应终端设备之间互相传递话音、图像、数据等信息。使得各终端之间可以实现点到点、点到多点、多点到点或多点到多点等不同形式的信息交互。
通信网络中显然会存在相当数量的用户终端,若将所有的用户终端实现一一互连、并使用开关加以控制,就能实现任意两个用户之间的通信,这种连接方式称为直接相连,如图5-1所示。
图5-1直接相连方式
采用这种连接方式,当有N个用户时,就需要设置 N*(N-1)对连接线路。若用户数量有微小增加将导致连接线路数量急剧增加,且由于线路对每个用户是专用的使得线路利用率不高。同时,为了实现通信过程的可控性,每个用户终端处还需要设(N-l)个开关施加控制,因此这种互连方式既不经济又很难 *** 作,仅适应于极其简单、规模很小的通信网络,不具有实用价值。
针对上述问题,一个可行的办法是给为数众多的用户引人一个公用的互连设备——交换机,所有的用户终端均各自通过一对专用线路连接到交换机上,这条连接线路称为用户线或用户环路。交换机的作用是通过本身的控制功能实现任意两个用户终端的自由连接,交换机所在的位置即称为交换节点。通过设置交换机,一方面大量减少了用户线路的使用数量,降低了网络建设的成本;另一方面由于呼叫接续、选路等功能均由交换机实现,因此也降低了控制的复杂度、提高了网络的可靠性。这一方式如图5-2所示。
图5-2 交换相连方式
2.交换网络
显然,当用户数量较多、分布地域较广时,就需要设置多个交换节点。各节点的交换机通过传输线路按照一定的拓扑结构(如星形网、环形网、树形网、混合型网络等)互连即组成交换网络,如图5-3所示。
图5-3 交换网络
图5-3中交换设备之间的连接线路称为中继线。此时交换节点的地位即类似于上文中的用户终端,多个交换节点之间也不能直接相连,需要引入汇接交换节点,该节点的交换设备称为汇接交换机。而交换网络中凡是直接与用户话机或终端相连接的交换机称为本地交换机。在话音通信网络中,本地交换机相应的交换局被称为市话局或端局;装有汇接交换机的局被称为汇接局,通信距离比较远的汇接交换机也叫长途交换机,相应的交换局所也称为长途局。在分组交换网络,如常见的IP网络中,本地交换机对应的设备是边缘路由器(交换机),汇接交换机对应的设备是核心路由器(交换机)、或者称为骨干路由器(交换机)。
电话通信网一般采用等级网络结构,对网络中每个交换节点分配一个等级,除最高级以外其它级的每个交换节点必须要连接到更高一级交换节点。网络等级越多接通一次呼叫需要转接的次数越多,这样的网络既占用了大量线路又增加了网络管理的复杂程度,所以必须根据通信网络服务的地域范围和用户数量合理规划交换网络的结构与网络拓扑。
3.交换设备的基本功能
以常见的话音通信网为例,电话交换机应能够实现以下呼叫接续方式:
(1)本局接续:同一交换机两条用户线之间的连接;
(2)出局接续:在交换机用户线与出中继线之间的连接;
(3)入局接续:在交换机入中继线与用户线之间的连接;
(4)转接接续:在交换机入中继线与出中继线之间的连接。
要实现上述各种接续控制,电话交换设备必须具有的基本功能包括:
(1)及时并正确地接收、识别沿着用户线或中继线送来的呼叫信号和目的地址信号;
(2)根据目的地址正确选择路由,将通信双方终端设备连接起来,这一过程称为呼叫建立;
(3)启动计费系统,监视用户状态的变化,准确统计通信时长;
(4)通信结束后根据收到的释放信号及时拆除连接,这一过程称为连接释放。
把电话交换机的例子推广到一般的电信交换系统,具有接口功能、互连功能、信令功能和控制功能是电信交换系统的四项基本技术功能。
(1)接口功能:接口分为用户接口和中继接口,其作用是分别将用户线和中继线连接到交换设备。采用不同交换技术的设备具有不同的接口。例如,程控数字电话交换设备要具有适配模拟用户线、模拟中继线和数字中继线的接口电路;而N-ISDN交换设备要有适配 2B+D的基本速率接口和30B+D的基群速率接口;ATM交换设备要有适配不同码率、不同业务的各种物理媒体接口;IP交换设备则需要提供各种能够承载IP帧的传输媒体接口,如双绞线以太网接口、光纤以太网接口等。
(2)互连功能:交换系统中采用互连网络(也称交换网络)实现任意入线与任意出线之间的连接,对于不同交换方式其连接可以是物理的(磁石式交换、数字程控交换、光交换)也可以是虚拟连接(分组交换、信元交换)。互连网络的拓扑结构及网络内部的选路原则直接影响互连网络的服务质量。除了尽力设计无阻塞的网络拓扑结构还要配置双套冗余结构,以增强互连网络的故障恢复能力。
(3)控制功能:有效的控制功能是交换系统实现信息自动交换的保障。控制方式有集中和分散控制两种基本方式,差别在于微处理机的配置方案,现代电信交换系统多数采用分散控制且控制功能大多以软件实现。例如:程控电话交换机的地址信号识别和数字分析程序、ATM交换机的呼叫接纳控制和自动路由控制等等、IP交换中的路由协议BGP、OSPF等。
(4)信令功能:信令是电信网中的接续控制指令,通过信令使得不同类型的终端设备、交换节点设备和传输设备协同运行。信令的传递需要通过规范化的一系列信令协议实现,由于交换技术的不断发展,信令协议和信令方式也根据不同的应用有所不同。
5.1.2交换技术的发展
交换技术最早源于电话通信,是现代通信网中最普通与常见的技术之一。交换技术从上个世纪初出现开始,一直到现在仍然在持续演进,交换技术的发展在很大程度上地反映了现代通信技术从人工到自动、从模拟到数字的发展。
1.模拟交换技术
第一个研究发明交换设备的人是一个名叫阿尔蒙.B.史端乔的美国人,他是美国堪萨斯一家殡仪馆的老板。他发觉,电话局的话务员不知是有意还是无意,常常把他的生意电话接到他的竞争者那里,使他的多笔生意因此丢掉。为此他大为恼火,发誓要发明一种不要话务员接线的自动接线设备。从1889年到1891年,他潜心研究一种能自动接线的交换机,结果他成功了。1891年3月10日,他获得了发明“步进制自动电话接线器”的专利权。1892年11月3日,用史端乔发明的接线器制成的“步进制自动电话交换机”在美国印第安纳州的拉波特城投入使用,这便是世界上第一个自动电话局。从此,电话通信跨入了一个新时代。但是自动电话的大踏步发展是在20世纪。到20世纪20年代,世界上还只有15%的电话是自动电话。随着自动电话技术的发展和进步,到20世纪50年代,世界上已有77%的电话是自动电话了。
史端乔发明的自动电话交换机的制式,为什么叫做“步进制”?这是因为它是靠电话用户拨号脉冲直接控制交换机的机械作一步一步动作的。例如,用户拨号“1”,发出一个脉冲(所谓“脉冲”,就是一个很短时间的电流),这个脉冲使接线器中的电磁铁吸动一次,接线器就向前动作一步。用户拨号码“2”,就发出两个脉冲,使电磁铁吸动两次,接线器就向前动作两步,由此类推。所以,这种交换机就叫做“步进制自动电话交换机”。
1919年,瑞典的电话工程师帕尔姆格伦和贝塔兰德发明了一种自动接线器,叫做“纵横制接线器”,并申请了专利。1929年,瑞典松兹瓦尔市建成了世界上第一个大型纵横制电话局,拥有3500个用户。“纵横制”的名称来自纵横接线器的构造,它由一些纵棒、横棒和电磁装置构成,控制设备通过控制电磁装置的电流可吸动相关的纵棒和横棒的动作,使得纵棒和横棒在某个交叉点接触,从而实现接线的工作。
“纵横制”和“步进制”都是利用电磁机械动作接线的,所以它们同属于“机电制自动电话交换机”。但是纵横制的机械动作很小,又采用贵重金属的接触点,因此比步进制交换机的动作噪声小、磨损和机械维修工作量也小,而且工作寿命也较长。
另外,纵横制与步进制的控制方式也不同。步进制是由用户拨号直接控制它的机械动作的,叫做直接控制式;而纵横制是用户拨号要通过一个公共控制设备间接地控制接线器动作,因而叫做间接控制式。间接控制方式比直接控制方式有明显的优点。例如,它的工作比较灵活,便于在有多个电话局组成的电话网中实现灵活的交换,便于实现长途电话自动化,还便于配合使用新技术、开放新业务等等。因而,它的出现使自动电话交换技术提高到一个新的水平。
纵横制与步进制交换机在话路部分与控制部分均采用机械技术,被称为模拟交换机。随着电子技术、特别是半导体技术的发展,人们开始在交换机内部引入电子技术。最初引入电子技术的是在交换机的控制部分,而对于话音质量要求较高的话路部分仍然使用模拟技术,因此出现了空分式电子交换机和时分式电子交换机等准电子交换机。它们一般在话路部分采用机械触点,而在控制部分采用电子器件,一般也归类为模拟交换机。
2.电路交换
电路交换是最早发展的一种针对电话业务传输的交换技术。这种交换方式的最大特点是:在通话之前即为通话双方建立一条通道,在通话过程中保持这条通道,一直到通话结束后拆除。
电路交换技术的主要代表是程控交换。70 年代初,在数字PCM传输大量应用的基础上,法国成功地发展了对PCM数字信号直接交换的交换机,它在控制方面采用程控方式,通话接续则采用电子器件实现的时分交换方式,由于控制部分和接续部分都采用了电子器件,也就实现了全数字交换。这种全数字时分式程控交换技术,表现出种种优点,促使世界各国都竞相发展这种程控数字交换技术。其实现技术不断得到改进而使得性能更加优越,成本却不断下降,到了80 年代中期,已取代空分模拟程控交换而处于发展全盛时期,程控数字电话交换机开始在世界上普及。在数字程控交换技术之后发展起来的分组交换、报文交换等技术也均属于数字交换技术的范畴。
3.分组交换
电路交换技术主要适用于传送和话音相关的业务,这种网络交换方式对于数据业务而言,有着很大的局限性。首先数据通信具有很强的突发性,峰值比特率和平均比特率相差较大,如果采用电路交换技术,若按峰值比特率分配电路带宽则会造成资源的极大浪费;如果按照平均比特率分配带宽,则会造成数据的大量丢失。其次是和语音业务比较起来,数据业务对时延没有严格的要求,但需要进行无差错的传输,而语音信号可以有一定程度的失真但实时性一定要高。早期的X.25技术、以及现在的以太网交换技术、IP交换技术均属于典型的分组交换技术。
分组交换技术就是针对数据通信业务的特点而提出的一种交换方式,它的基本特点是面向无连接而采用存储转发的方式,将需要传送的数据按照一定的长度分割成许多小段数据,并在数据之前增加相应的用于对数据进行选路和校验等功能的头部字段,作为数据传送的基本单元即分组。采用分组交换技术,在通信之前不需要建立连接,每个节点首先将前一节点送来的分组收下并保存在缓冲区中,然后根据分组头部中的地址信息选择适当的链路将其发送至下一个节点,这样在通信过程中可以根据用户的要求和网络的能力来动态分配带宽。分组交换比电路交换的电路利用率高,但时延较大。从发送终端发出的各个分组,将由分组交换网根据分组内部的地址和控制信息被传送到与接收终端连接的交换机,但对属于同一数据帧的不同分组所经过的传输路径却不是唯一的,即各分组交换机通信时能够根据交换网的当前状态为各分组选择不相同传输路径,以免线路拥挤造成网络阻塞。与此相反,电路交换只能在建立通信的最初阶段进行路径选择。当分组通过分组交换网被传送到接收端的交换机之后,由分组交换机组装功能根据各个分组内所携带的分组顺序编号,对分组进行排列,并通过用户线把按顺序排列好的分组恢复为原来的数据传送给相应的接收终端。
4.报文交换
报文交换技术和分组交换技术类似,也是采用存储转发机制,但报文交换是以报文作为传送单元,由于报文长度差异很大,长报文可能导致很大的时延,并且对每个节点来说缓冲区的分配也比较困难,为了满足各种长度报文的需要并且达到高效的目的,节点需要分配不同大小的缓冲区,否则就有可能造成数据传送的失败。在实际应用中报文交换主要用于传输报文较短、实时性要求较低的通信业务,如公用电报网。报文交换比分组交换出现的要早一些,分组交换是在报文交换的基础上,将报文分割成分组进行传输,在传输时延和传输效率上进行了平衡,从而得到广泛的应用。
5.ATM交换
分组交换技术的广泛应用和发展,出现了传送话音业务的电路交换网络和传送数据业务的分组交换网络两大网络共存的局面。语音业务和数据业务的分别传送,促使人们思考一种新的技术来同时提供电路交换和分组交换的优点,并且同时向用户提供统一的服务,包括话音业务、数据业务和图像信息。由此,在20世纪80年代末由原CCITT提出了宽带综合业务数字网的概念,并提出了一种全新的技术——异步传送模式(ATM)。ATM技术将面向连接机制和分组机制相结合,在通信开始之前需要根据用户的要求建立一定带宽的连接,但是该连接并不独占某个物理通道,而是和其他连接统计复用某个物理通道,同时所有的媒体信息,包括语音、数据和图像信息都被分割并封装成固定长度的分组在网络中传送和交换。
ATM另一个突出的特点就是提出了保证QoS的完备机制,同时由于光纤通信提供了低误码率的传输通道,所以可以将流量控制和差错控制移到用户终端,网络只负责信息的交换和传送,从而使传输时延减少,ATM非常适合传送高速数据业务。从技术角度来讲,ATM几乎无懈可击,但ATM技术的复杂性导致了ATM交换机造价极为昂贵,并且在ATM技术上之上没有推出新的业务来驱动ATM市场,从而制约了ATM技术的发展。目前ATM交换机主要用在骨干网络中,主要利用ATM交换的高速特性和ATM传输对QoS的保证机制,并且主要是提供半永久的连接。
6.光交换
由于光纤传输技术的不断发展,目前在传输领域中光传输已占主导地位。光传输速率已在向每秒太比特的数量级进军,其高速、宽带的传输特性,使得以电信号分组交换为主的交换方式已很难适应,而且在这一方式下必须在中转节点经过光电转换,无法充分利用底层所提供的带宽资源。在这种情况下一种新型的交换技术——光交换便诞生了。光交换技术也是一种光纤通信技术,它是指不经过任何光/电转换,在光域直接将输入光信号交换到不同的输出端。光交换技术的最终发展趋势将是光控制下的全光交换,并与光传输技术完美结合,即数据从源节点到目的节点的传输过程都在光域内进行。
5.2 数字程控交换
5.2.1呼叫处理的一般过程
首先我们以用户主叫的情况为例,说明数字程控交换机进行呼叫接续处理的一般过程。
(1)当用户摘机时,由于线路电压的变化,用户电路即会检测到这一动作,交换机调查用户的类别,以区分一般电话、投币电话、小交换机等,寻找一个空闲收号器并向用户传送拔号音;
(2)用户拔号时,停送拨号音,启动收号器进行收号并对收到的号码按位存储;
(3)在预处理中分析号首,以决定呼叫类别(本局、出局、长途、特服等),并决定一共该收几位号;当收到一个完整有效的号码后,交换机即根据此号码进行号码分析;
(4)根据号码分析的结果向被叫所在的本地交换局查找是否存在空闲线路,以及被叫状态。如果条件都满足,则占用资源,并向主叫用户送回铃音,以及向被叫用户振铃;
(5)被叫用户摘机之后,话音即在分配的线路上传输,同时启动计费设备开始计费,并监视主、被叫用户状态;
(6)当一方挂机之后,即拆线,释放资源,停止计费 *** 作,并向另一方传送忙音。此时就完成了一个完整的正常呼叫流程。
5.2.2数字交换网络的工作原理
数字程控交换机的核心组成部分即是交换网络,它具有以下特点。
(1)直接交换数字信号:在多被叫用户的用户电路之间,用户话音都是以数字信号的形式存在,因此不必像模拟交换机那样进行多次数/模和模/数的转换。而且数字信号,可以方便在集成电路中进行处理,所以可以设计复杂度更高,规模更大的交换网络;
(2)根据主被叫号码进行交换;在收号完成之后,控制电路会进行号码分析,并根据号码分析的结果产生相应的信息来选择呼叫接续的路由,而经过各交换机建立呼叫路由的过程即是交换的过程,早期的步进式交换机是根据用户的拔号脉冲来选择交换路由;
(3)时隙交换:交换实际上就是将不同线路,不同时隙上的信息进行交换,对这些不同空间和不同时间信号进行搬移,例如:将入中继线1上的TS5与出中继线4上的TS18进行交换,如图5-4所示。
图5-4时隙交换
程控交换机的交换网络根据交换网络的组织形式可以分为时分交换网络、空分交换网络、以及混合型交换网络几种类型。
1.时分交换
(1)时分交换对应的是T接线器,它完成的是同一中继线上不同时隙之间的交换;
(2)组成:T接线器由话音存储器和控制存储器完成,话音存储器用于存储输入复用线上,各话路时隙的8bit编码数字话音信号;控制存储器用于存储话音存储器的读出或写入地址,作用是控制话音存储器各单元内容的读出或写入顺序;
(3)依据对话音存储器的读写控制方式不同,又可以分为顺序写入控制读出和控制写入顺序读出两种。
① 顺序写入控制读出:话音存储器中的内容是按照时隙到达的先后顺序写入的,但它的读出受到控制存储器的控制,根据交换的要求来决定话音存储器中的内容在哪一个时隙被读出;
② 控制写入顺序读出:话音存储器的写入受控制存储器的控制,即根据出中继线的目的时隙来决定入中继线各个时隙中内容被写入话音存储器的位置,而读出则是从话音存储器中顺序依次读出。
时分交换的原理如图5-5所示。
图5-5 时分交换方式
2.空分交换:
(1)空分交换又称为S接线器,功能是完成不同中继线的同一时隙内容的交换。
(2)组成;空分交换器,由交叉结点矩阵和控制存储器组成。交叉结点矩阵为每一入中继线提供了和任一出中继线相交的可能,这些相交点的闭合时刻就由控制存储器控制。空分交换器也包括输出控制和输入控制两种类型。
空分交换的原理如图5-6所示。
图5-6 空分交换方式
3.复合型交换网络:
对于大规模的交换网络,必须即能实现同一中继线不同时隙之间的交换又能实现不同中继线相同时隙之间的交换,因此需要将时分交换和空分交换相结合组成复合型交换网络。
(1)TST型交换网络:这是大规模交换网络中应用最为广泛的一种形式。其中:采用输入T接线器完成同一入中继线不同时隙之间的交换;S接线器负责不同母线之间的空分交换;输出T接线器负责同一出中继线不同时隙之间的交换。各接线器采用哪一种控制方式可以任意选择,而输入/输出T接线器都需要利用交换机内部的空闲时隙来完成交换;
(2)STS交换网络:首先输入的S接线器将时隙信号交换到内部的空闲链路;然后T接线器将这一链路上的信号交换到需要的时隙;最后再由输出S接线器将此信号交换到需要的链路;
(3)多级交换网络:除了以上两种三级交换网络以外还存在着多级交换网络。例如TSST组成的四级网络,TSSST组成的五级网络等。
(4)交换网络的集成化:随着数字交换技术的发展,一些芯片厂商推出了交换网络的集成芯片,目前2048×2048、4096×4096交换规模的交换芯片已经是非常成熟的商用芯片。
5.2.3程控交换机的组成
1.基本组成
电话交换机主要由话路设备和控制设备两部分组成。
(1)话路设备:完成主被叫之间的呼叫接续,具体传递用户之间的话音信号。用户电路、交换网络、出中继电路、入中继电路均属于话路设备;
(2)控制系统:控制系统控制以上这些呼叫接续动作,程控交换机的控制是通过运行在中央处理器中的软件完成的。控制系统的功能包括两个方面:一方面是对呼叫进行处理;另一方面对整个交换系统的运行进行管理、监测和维护。控制系统的硬件由三部分组成:一是中央处理器(CPU),它可以是一般数字计算机的中央处理芯片、也可以是交换系统专用芯片;二是存储器,它存储交换系统的常用程序和正在执行的程序以及执行数据;三是输入输出系统,包括键盘、打印机、外存储器等,可根据指令打印出系统数据、存储非常用运行程序,在程序运行时刻调入内存储器。
2.用户电路的组成
用户电路是交换网络和用户线间的接口电路,它的作用是:一方面把语音信息(模拟或数字)传送给交换网络;另一方面把用户线上的其它信号(如铃流等)和交换网络隔离开来,以免损坏交换网络。用户电路的功能可以用BORSCHT概括,相应的分别对应不同的功能模块,以下分别说明。
(1)馈电B:向用户话机供电,在我国馈电电压为-48V或-60V,如果用户线距离较长,则馈电电压还可能提高;
(2)过压保护O:用户线是外线,可能遭到雷电袭击或与高压线相碰,因此必须设置过压保护电路以保护交换机内部。通常用户线在配线时已经设置了气体放电装置,但经过气体放电装置的电压仍可能有上百伏,过压保护电路主要针对的是这个电压;
(3)振铃R:由于振铃电压较高,我国规定为75V±15V,因此还是采用由电子元件控制振铃继电器来实现,铃流的产生由继电器接点的通断控制。也有交换机采用高压电子器件来实现振铃功能;
(4)监视S:通过监视用户线的直流电流来确定用户线回路的通断状态,进而检测摘机、挂机、拔号、通话等用户状态;
(5)编译码与滤波C:完成模拟话音信号和数字信号之间的转换,包括抽样、量化、编码三个步骤。此外还负责滤除话音频带以外的频率成份;
(6)混合电路H:混合电路完成二线/四线之间的转换功能,用户线的模拟信号是二线双向的,但PCM中继线的信号是四线单向的。因此在编码之前,或是译码之后要完成二线/四线的转换;
(7)测试T:负责将用户线接到测试设备以便对用户线进行测试。
除去以上七项基本功能之外,用户电路还具有极性倒换、衰减控制、计费脉冲发送,特殊话机控制(如投币电话)等功能。
5.2.4程控交换机的分类
(1)根据所服务的范围不同:可以分为局用交换机和用户交换机。前者在多个本地交换局或汇接局之间完成交换。通过出入中继线与其它交换局相连。后者直接与用户通过本地用户线相连,将这些用户的呼叫汇接之后,再通过中继线与其它交换局相连;
(2)根据交换方式的不同:可以分为空分交换和时分交换。这实际上是交换网络的工作方式。实用的大规模电话交换机,也经常采用混合交换方式;
(3)根据交换的话音信号不同:可以分为模拟交换机和数字交换机,前者包括机电式交换机,空分式交换机。后者交换的对象都是经过编码之后的数字信号。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)