Nature Photonics:二维半导体WSe2,纳米光子界面

Nature Photonics:二维半导体WSe2,纳米光子界面,第1张

手性纳米光子界面Chiral nanophotonic interfaces,能够实现导向光学模式和圆形二向色材料之间传播方向相关的相互作用。界面手性的电调谐,将有助于片上光电和光子电路主动、可切换非互易性,但仍然极具挑战。

近日,美国 芝加哥大学 Alexander A. High团队在Nature Photonics上发文,报道了在原子薄单层二硒化钨tungsten diselenide(WSe2)纳米光子界面中的电可控手性。二氧化钛波导直接制作在低无序氮化硼封装的WSe2表面上。在积分之后,从激子态到波导中的光致发光,可以在平衡发射和定向偏置发射之间电切换。工作原理利用了WSe2中激子态掺杂相关的谷极化。此外,纳米光子波导,可以用作扩散激子通量的近场源,其显示从界面手性继承的谷和自旋极化。这种多功能制造方法,使光子学与范德瓦尔斯异质结构的确定性集成成为可能,并可提供对其激子和电荷载流子行为的光学控制。

Electrically controllable chirality in a nanophotonic interface with a two-dimensional semiconductor

二维半导体的纳米光子界面中的电控手性。

图2:界面静电调谐。

图3:谷极化的栅极依赖性。

图4:谷(自旋)极化激子通量的光子泵浦。

该项研究演示了与六方氮化硼hexagonal boron nitride,hBN封装的、电门控WSe2单层连接的光子波导。界面表现出从0%到20%电可调手性-定向耦合效率chiral–directional coupling efficiency,CDCE,并通过近场激发产生谷(自旋)极化激子通量。

除了线性波导,多功能纳米光子制造方法,可以将过渡金属硫化物TMDCs与更复杂的光子结构连接,其中器件几何形状和尺寸仅,受先进光刻技术限制,使光子环调制器和干涉仪,以及光子晶体中的激子-极化激元成为可能。

结合二维材料大面积生长、剥离和组装的最新进展,这将提高异质结构产量和可扩展性,超越目前限制,这项工作,为其与纳米光子电路的确定性、晶圆级集成,建立了一个通用平台。

重要的是,该界面的可调手性(以前在其他手性光学界面中无法获得)依赖于过渡金属硫化物TMDC单层中激子态掺杂相关的谷动力学。多层和扭曲的范德瓦尔斯异质结构,展示了设计的、奇异的谷特性,也可以与这种波导界面相结合,用于额外手性功能,如栅极可逆发射路由,并提供基于二维材料的新光子逻辑和控制方案。

此外,原子薄半导体中,激子扩散的纳米光子驱动,在分布式光子元件和局部激子电路之间建立了一座桥梁。此外,通过手性过渡金属硫化物TMDC–光子界面的近场光泵浦,可用于产生单层中驻留电荷载流子的自旋极化。这种光学制备的自旋极化电子态,对载流子掺杂水平敏感,可以打破界面时间反演对称性,实现集成纳米光子结构中的栅极激活全光非互易性。

文献链接:https://www.nature.com/articles/s41566-022-00971-7

DOI: https://doi.org/10.1038/s41566-022-00971-7

本文译自Nature。

背景

目前,以硅为代表的传统半导体材料正在面临严峻挑战。通过原理创新、结构改善、工艺进步,科研人员很难再大幅度提升硅基半导体器件的总体性能。“后摩尔时代”已经悄然到来。作为有望取代硅基半导体材料的新一代半导材料,近年来二维半导体的研究进展迅猛。

石墨烯凭借机械强度高、导电导热性好、轻薄、柔性、透明等优势,一度被誉为“新材料之王”,也让二维材料成为了备受瞩目的热点。遗憾的是,石墨烯中独特的碳原子排列,虽然有利于电子轻松地高速流动,但也使之不适合作为半导体。石墨烯没有带隙,无法选择”打开“或者”关闭“电流,而这种二进制开关机制正是现代电子器件的基础。

不过除了石墨烯之外,越来越多的二维材料被人类发现并研究,其中也不乏可以作为半导体的二维材料,例如过渡金属硫族化合物、黑磷等。科学家们已经通过这些二维材料创造出诸多半导体器件,例如:

然而,在二硫化钼(MoS2)为代表的二维半导体器件的制造工艺中,采用电子束光刻技术,将金属电极纳米刻画到这种原子级二维材料的层上,目前会产生一些问题,导致“非欧姆接触”与“肖特基势垒”。

创新

近日,美国纽约大学工学院化学与生物分子工程系教授 Elisa Riedo 领导的团队,报告了原子级薄度处理器制造工艺中的一项重要突破。这一发现不仅将对纳米芯片制造工艺产生深远影响,而且也将鼓舞全世界各个实验室中 探索 将二维材料应用于更小更快的半导体的科学家们。

团队将他们的科研成果发表在最近一期的《自然电子学(Nature Electronics)》期刊上。

技术

他们演示的这种刻蚀技术,采用了加热至100摄氏度以上的探针,超越了在二硫化钼等二维半导体上制造金属电极的普遍方法。科学家们相信,这种过渡金属属于有望替代硅应用于原子级微型芯片的材料。团队开发的新制造方法,称为“热扫描探针刻蚀技术(t-SPL)”,相比于目前的电子束光刻技术(EBL)具有一系列优势。

价值

首先,热刻蚀技术显著提升了二维晶体管的质量,抵消了肖特基势垒。肖特基势垒阻碍了二维衬底与金属交界处的电子流动。其次,不同于EBL,热刻蚀技术使芯片制造者可轻松获取二维半导体图像,然后在期望的位置刻画电极。再次, t-SPL 制造系统有望显著减少初始投入以及运营成本:它们通过在一般环境条件下的运作大幅降低功耗,无需生成高能电子以及超高真空。最后,这种热加工方法很容易通过采用“并行”的热探针来扩展,从而应用于工业生产。

Riedo 表示,她希望 t-SPL 将许多加工过程带出稀缺的净室,带入个人实验室。在净室中,研究人员们必须为这些昂贵的设备争取时间;而在个人实验室中,他们将迅速地推进材料科研与芯片设计。3D打印机这个先例,就是一个很好的类比。有朝一日,这些低于10纳米分辨率的 t-SPL 工具,在普通环境条件下,依靠标准的120伏电源运行,将遍及像她的实验室一样的各个研究实验室。

参考资料

【1】https://engineering.nyu.edu/news/breakthrough-reported-fabricating-nanochips

【2】https://www.nature.com/articles/ncomms8702

【3】Xiaorui Zheng, Annalisa Calò, Edoardo Albisetti, Xiangyu Liu, Abdullah Sanad M. Alharbi, Ghidewon Arefe, Xiaochi Liu, Martin Spieser, Won Jong Yoo, Takashi Taniguchi, Kenji Watanabe, Carmela Aruta, Alberto Ciarrocchi, Andras Kis, Brian S. Lee, Michal Lipson, James Hone, Davood Shahrjerdi, Elisa Riedo. Patterning metal contacts on monolayer MoS2 with vanishing Schottky barriers using thermal nanolithography . Nature Electronics, 20192 (1): 17 DOI: 10.1038/s41928-018-0191-0

半导体主要具有三大特性:

1.热敏特性

半导体的电阻率随温度变化会发生明显地改变。例如纯锗,湿度每升高10度,它的电阻率就要减小到原来的1/2。温度的细微变化,能从半导体电阻率的明显变化上反映出来。利用半导体的热敏特性,可以制作感温元件——热敏电阻,用于温度测量和控制系统中。

值得注意的是,各种半导体器件都因存在着热敏特性,在环境温度变化时影响其工作的稳定性。

2.光敏特性

半导体的电阻率对光的变化十分敏感。有光照时、电阻率很小;无光照时,电阻率很大。例如,常用的硫化镉光敏电阻,在没有光照时,电阻高达几十兆欧姆,受到光照时。电阻一下子降到几十千欧姆,电阻值改变了上千倍。利用半导体的光敏特性,制作出多种类型的光电器件,如光电二极管、光电三极管及硅光电池等。广泛应用在自动控制和无线电技术中。

3.掺杂特性

在纯净的半导体中,掺人极微量的杂质元素,就会使它的电阻率发生极大的变化。例如。在纯硅中掺人。百万分之—的硼元素,其电阻率就会从214000Ω·cm一下于减小到0.4Ω·cm,也就是硅的导电能为提高了50多万倍。人们正是通过掺入某些特定的杂质元素,人为地精确地控制半导体的导电能力,制造成不同类型的半导体器件。可以毫不夸张地说,几乎所有的半导体器件,都是用掺有特定杂质的半导体材料制成的。

扩展资料

1、半导体的组成部分

半导体的主要由硅(Si)或锗(Ge)等材料制成,半导体的导电性能是由其原子结构决定的。

2、半导体分类

(1)半导体材料很多,按化学成分可分为元素半导体和化合物半导体两大类。

锗和硅是最常用的元素半导体;化合物半导体包括第Ⅲ和第Ⅴ族化合物(砷化镓、磷化镓等)、第Ⅱ和第Ⅵ族化合物( 硫化镉、硫化锌等)、氧化物(锰、铬、铁、铜的氧化物),以及由Ⅲ-Ⅴ族化合物和Ⅱ-Ⅵ族化合物组成的固溶体(镓铝砷、镓砷磷等)。除上述晶态半导体外,还有非晶态的玻璃半导体、有机半导体等。

(2)按照其制造技术可以分为:集成电路器件,分立器件、光电半导体、逻辑IC、模拟IC、储存器等大类,一般来说这些还会被分成小类。

此外还有以应用领域、设计方法等进行分类,虽然不常用,但还是按照IC、LSI、VLSI(超大LSI)及其规模进行分类的方法。此外,还有按照其所处理的信号,可以分成模拟、数字、模拟数字混成及功能进行分类的方法。

3、半导体的作用与价值

目前广泛应用的半导体材料有锗、硅、硒、砷化镓、磷化镓、锑化铟等。其中以锗、硅材料的生产技术较成熟,用的也较多。

用半导体材料制成的部件、集成电路等是电子工业的重要基础产品,在电子技术的各个方面已大量使用。半导体材料、器件、集成电路的生产和科研已成为电子工业的重要组成部分。在新产品研制及新技术发展方面,比较重要的领域有:

(1)集成电路 它是半导体技术发展中最活跃的一个领域,已发展到大规模集成的阶段。在几平方毫米的硅片上能制作几万只晶体管,可在一片硅片上制成一台微信息处理器,或完成其它较复杂的电路功能。集成电路的发展方向是实现更高的集成度和微功耗,并使信息处理速度达到微微秒级。

(2)微波器件 半导体微波器件包括接收、控制和发射器件等。毫米波段以下的接收器件已广泛使用。在厘米波段,发射器件的功率已达到数瓦,人们正在通过研制新器件、发展新技术来获得更大的输出功率。

(3)光电子器件 半导体发光、摄象器件和激光器件的发展使光电子器件成为一个重要的领域。它们的应用范围主要是:光通信、数码显示、图象接收、光集成等。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/8999646.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-23
下一篇 2023-04-23

发表评论

登录后才能评论

评论列表(0条)

保存