梳理
半导体上游
材料公司芯片的上游材料,其实在介绍国家基金二期的文章里也简单提到过。今天我们再做一次物质面的全面梳理。半导体材料包括
光刻胶、靶材、特殊气体等。,这个应该很多朋友都知道。目前这些半导体材料只有15%左右是国产的。在国外封锁相关产业链的情况下,国内替代仍然是重点。从机构披露的报告来看,半导体上游材料的报告数量在增加,未来国产化趋势仍将持续。这些材料可分为三类:基础材料、制造材料和包装材料。基本材料基本上,材料可以分为硅片和化合物半导体。硅片是集成电路制造过程中最重要的原材料。相关上市公司:上海新阳、晶盛机电、中环股份。化合物主要指砷化镓(gaas)、氮化镓(gan)和碳化硅(sic)等。最近热炒的氮化镓也在其中,所以并不新鲜。上市公司:三安光电、文泰科技、海特高新、士兰威、福满电子、耐威科技、海陆重工、云南锗业、赣兆光电等。制造材料。制造材料可分为六大类:电子专用气体、溅射靶材、光刻胶、抛光材料、掩膜、湿式电子化学品。电子特种气体特种气体是特种气体的一个重要分支,是集成电路(ic)、显示面板(LCD、有机发光二极管)、光伏能源、光纤电缆等电子工业生产中不可或缺的原料。它广泛应用于薄膜、光刻、刻蚀、掺杂、气相沉积、扩散等工艺中,其质量对电子元器件的性能有重要影响。相关上市公司:华特燃气、雅克科技、南大光电、杭氧股份。溅射靶在高科技芯片产业中,溅射靶材是VLSI制造的必备原材料。它利用离子源产生的离子在高真空中加速聚集形成高速离子束,轰击固体表面。离子与固体表面上的原子交换动能,使得固体表面上的原子离开固体并沉积在基底表面上。被轰击的固体是溅射沉积薄膜的原料,称为溅射靶。靶材是溅射工艺的核心材料。目前a股市场从事溅射靶材的上市公司只有四家:阿诗创、友研新材、江峰电子、龙华科技。光刻胶光刻胶是电子领域微图形加工的关键材料,在半导体、LCD、PCB等行业的生产中发挥着重要作用。光刻胶是通过光化学反应将所需精细图形从掩膜版转移到加工基板上的图形转移介质,是光电信息产业中精细图形电路加工的关键材料。上市公司:南大光电、李强新材料、景瑞、荣达光敏、金龙机电、飞凯材料、江华微等光泽剂一般指cmp化学机械抛光工艺中使用的材料,一般可分为抛光垫、抛光液、调节剂和清洁剂,其中前两者最为关键。抛光垫的材料一般为聚氨酯或含饱和聚氨酯的聚酯,抛光液一般由超细固体颗粒磨料(如纳米二氧化硅、氧化铝颗粒)、表面活性剂、稳定剂、氧化剂等组成。上市公司:鼎龙(抛光垫)、安吉科技(抛光液)。掩模板又称光掩模、光掩膜、光刻掩膜,是半导体芯片光刻工艺中设计图案的载体。上市公司:菲利帕和应时。湿电子化学品又称超净高纯试剂,是指半导体制造过程中使用的各种高纯化学试剂。上市公司主要包括:多氟多、景瑞、江华微。包装材料封装材料可细分为六大类:芯片键合材料、键合线、陶瓷封装材料、引线框架、封装基板和切割材料。芯片键合材料是一种利用键合技术将芯片与基底或封装基板连接起来的材料。上市公司:飞凯材料、宏昌电子陶瓷封装材料是一种电子封装材料,用于承担电子元器件的机械支撑、环境密封和散热等功能。相关上市公司:三环集团封装基板是封装材料中最昂贵的部分,主要起到承载保护芯片,连接上层芯片和下层电路板的作用。相关公司:兴森科技、深南电路键合线,半导体用键合线,用于焊接连接芯片与支架,承担芯片与外界的关键电连接功能。相关上市公司主要有:康强电子引线框架作为半导体的芯片载体,是通过键合线实现芯片内部电路端子与外部电路(pcb)之间的电连接,形成电气回路的关键结构部件。相关上市公司:康强电子材料切割,目前主流的切割方式分为两类,一类是用划线系统切割,一类是用激光切割。相关上市公司主要有:戴乐新材料2018年,全球半导体材料销售额为519亿美元,占比矩阵材料(23.4%)、制造材料(38.7%)和封装材料(28%)。中打破了摩尔定律,在新的半导体研究领域取得了巨大的突破。利用一种新的超薄电极材料,实现了二维半导体电子与逻辑电路的自由控制。此外,南洋理工大学、北京大学、南京大学等高校的科研队伍,也在二维半导体的整合与成长上取得了突破性进展。
中国的本土企业也在努力地积累和研究相关的技术,这些技术将会在将来获益。首先,我们要说的是,摩尔定律是什么,为什么它会对半导体产生如此大的影响。戈登·摩尔,英特尔的共同创始人,提出了著名的摩尔定律:每18到24个月,集成电路上的元件数目就会翻一番,而其性能也会翻一番。这就意味着,在每一块硅片上,晶体管的体积会变得更小,也会变得更多。但是今天,一块指甲盖大小的晶体管可以容纳一百亿个,而硅晶体管也已经接近了它的物理极限。摩尔定律的继续,要求新的材料,新的装置。
目前,人们对二维半导体的前景非常看好,因为传统的硅片晶体是以三维块状半导体为基础,使得电子难以透过纳米尺寸的通道。然而,由于二维材料的存在,使得晶体管的体积变得更小,变成了一种更容易让电荷在其中自由流动的超薄晶体管。
由光敏材料及器件研究中心的黄博士、物理学院的李金龙教授带领的一个研究团队,成功地利用了一种新型的超薄电极材料(Cl-SnSe2),实现了二维半导体电子及逻辑电路的自由控制。
该研究成功地解决了费米能级钉扎问题,使得传统的二维半导体器件难以完成互补逻辑电路,只显示 N型或 P型器件的性能。利用这种新的电极材料,可以实现 N型、 P型的功能,从而形成一种高性能、低功耗、互补逻辑的逻辑电路。
黄教授预测,这种新型的二维电极材料将会是很薄的,具有很高的透明度和d性。所以,他们可以应用到下一代的可弯曲的、透明的半导体装置上。南洋理工大学,北京大学,清华大学和北京量子资讯 科技 研究院的研究者们,近期展示了一种将单晶体滴定在二维半导体上的方法,即高 K钙钛矿的一种氧化物。该技术将为新的晶体管和电子器件的发展提供新的可能。
报告中提及了一种叫做“一种钙钛矿”的单晶滴定锶,以前人们已经发现,用一种具有不同的原子结构的钙钛矿氧化物难以实现。但是,这个研究小组使用了一种聪明的方法,它能够超越这个极限,使材料的组合几乎是无限的。
研究者称,他们发明的晶体管可以用来制作互补的 MOS电路,同时也可以降低功率消耗。在将来,这些装置将会被大量生产,用以研发低功率的逻辑和微型晶片。前不久,王欣然教授和南京大学王金兰教授的研究小组共同宣布,世界上第一个大规模、均匀的二层二硫化钼,这是目前已知的最好的二维半导体材料之一,薄膜的外延生长。
东南大学教授马亮说:“我们的研究成果,不但打破了二硫化钼薄膜的层数可控生长技术瓶颈,开发出了性能最高的二硫化钼膜器件,并将其应用到其它二维材料的外延上,为以后的硅半导体器件的发展开辟了新的思路。”
在二硫化钼的研究中,二硫化钼的载流子迁移率和驱动电流都比单层二硫化钼高,在电子设备的应用中占有很大的优势。然而,采用常规方法制备的二硫化钼双层膜存在着层数均匀性差、膜不连续性等问题,研究小组提出了一种新型的基板诱导成核和“齐头并进”的新型生长机理。
值得一提的是,芯片制造商们,也在积极地进行着新的研究。英特尔与台积电将于2021年12月举行的 IEEE国际电子装置大会上,为解决二维半导体高阻、低电流问题提供了解决办法。在半导体与金属的接触处,存在着锋利的电阻尖,这是目前二维半导体面临的最大阻碍。
台积电与英特尔公司采用了半金属锑作为接触材料,以减少半导体与触头间的能量壁垒,以达到低阻性。从2019年起,台积电一直在寻求一种可以替代硅的二维材料。台积电在今年五月率先宣称,他们已经找到了半金属铋可以在很低的电阻下,成为二维半导体的粘结剂。但是铋的熔点太低,不能承受后续的晶片高温处理。
南京大学电子工程学院王欣然博士团队,着眼于中国国内市场的发展,在2021年九月,天马微电子(深天马)与天马公司的合作,为今后 Micro LED技术的发展开辟了一条崭新的技术路径。
评论列表(0条)