欢迎分享,转载请注明来源:内存溢出
集成电路工艺中,多步退火过程中有(Dt)eff=D1t1+D2t2+...+Dntn,其物理意义就是要取得一定的扩散深度,可以采用多补退火(推进)的方式实现。上式左边的(Dt)eff就是热预算,其单位为cm^2,你可以任意搭配等式右边的式子,以完成热预算的要求。半导体器件中iso区是浅沟道隔离。能实现高密度的隔离,深亚微米器件和DRAM等高密度存储电路。在器件制作之前进行,热预算小,STI技术工艺步骤类似LOCOS,依次生长SiO2淀积Si3N4涂敷光刻胶,光刻去掉场区的SiO2和Si3N4。利用离子刻蚀在场区形成浅的沟槽。进行场区注入,再用CVD淀积SiO2填充沟槽,用化学机械抛光技术去掉表面的氧化层,使硅片表面平整化。工艺复杂,要回刻或者CMP。先说说硅:作为现在最广泛应用的半导体材料,它的优点是多方面的. 1)硅的地球储量很大,所以原料成本低廉. 2)硅的提纯工艺历经60年的发展,已经达到目前人类的最高水平. 3)Si/SiO2 的界面可以通过氧化获得,非常完美.通过后退火工艺可以获得极其完美的界面. 4)关于硅的掺杂和扩散工艺,研究得十分广泛,前期经验很多. 不足:硅本身的电子和空穴迁移速度在未来很难满足更高性能半导体器件的需求.氧化硅由于介电常数较低,当器件微小化以后,将面临介电材料击穿的困境,寻找替代介电材料是当务之急.硅属于间接带隙半导体,光发射效率不高. ------------------------------------ 锗:作为最早被研究的半导体材料,带给我们两个诺贝尔奖,第一个transistor和第一个IC.锗的优点是: 1)空穴迁移率最大,是硅的四倍;电子迁移率是硅的两倍. 2)禁带宽度比较小,有利于发展低电压器件. 3)施主/受主的激活温度远低于硅,有利于节省热预算. 4)小的波尔激子半径,有助于提高它的场发射特性. 5)小的禁带宽度,有助于组合介电材料,降低漏电流. 缺点也比较明显:锗属于较为活泼的材料,它和介电材料的界面容易发生氧化还原反应,生成GeO,产生较多缺陷,进而影响材料的性能;锗由于储量较少,所以直接使用锗作衬底是不合适的,因此必须通过GeOI(绝缘体上锗)技术,来发展未来器件.该技术存在一定难度,但是通过借鉴研究硅材料获得的经验,相信会在不久的将来克服.
赞
(0)
打赏
微信扫一扫
支付宝扫一扫
评论列表(0条)