科研前线 - IMEC联合团队开发NWFETs分析模型,探索HCD物理机制

科研前线 - IMEC联合团队开发NWFETs分析模型,探索HCD物理机制,第1张

探索HCD物理机制" img_height="237" img_width="1080" data-src="//imgq8.q578.com/ef/0705/8e85ab753c771965.jpg" src="/a2020/img/data-img.jpg">

直击前线科研动态

尽在 芯片揭秘 科研前线

在第27届 IEEE IPCF 会议上,IMEC发表了与欧洲名校KU Leuven和TU Wien的联合研究成果,其团队拓展了HCD(热载流子退化)效应的研究模型,综合考虑了HCD效应与自热效应两种现象之间的关联和相互影响,并在对纳米线晶体管的实测中获得了验证。

在先进集成电路器件中,器件尺寸的缩小幅度大于工作电压和偏置应力电压的减小幅度,从而造成高电场;除此之外,晶体管的通道长度与载流子的平均自由程相当或更短,载流子因散射耗散的能量随之大减。综上因素因素会导致载流子的大幅加速,进而导致显著的 热载流子退化* (Hot-carrier degradation,以下简称HCD)。在 纳米线(Nanowire) 晶体管器件和FinFET等10nm和亚10nm尺寸的集成电路器件中,HCD效应因自热效应(Self-Heating Effect)而进一步加剧,被认为是最为损害器件可靠性的问题。

而与HCD密切相关的 偏置温度不稳定性 (Bias Temperature Instability,以下简称BTI)现象,在晶体管中相比HCD破坏性要小。在近年的研究中,控制和缓解BTI的技术手段被提出并得到了验证,这些工作大多基于两点,一是通过 调整功函数 将缺陷带转移到载流子无法达到的能量区域,二是在 SiO层 high-k 层之间引入偶极子。然而,到目前为止,尚无能有效减缓HCD效应的手段,更好地了解导致HCD的物理机制将有助于 探索 减缓HCD效应的手段。

自热增强了HCD效应,一个精确的HCD预测模型应该考虑自热效应的影响,但目前模拟自热对HCD影响的模型都基于实验经验和孤立猜想和假设,存在片面性。为加深对HCD诱发机制的理解,建立更接近电路实际工作条件的研究模型, IMEC 鲁汶大学 KU Leuven )和 维也纳工业大学 TU Wien )联合实验团队提出并验证了新的物理模型。相关成果以“ Physical Modeling the Impact of Self-Heating on Hot-Carrier Degradation in pNWFETs ”为题发表于2020年举办的第27届IEEE国际集成电路物理与失效分析会议(IPFA, International Symposium on the Physical and Failure Analysis of Integrated Circuits),来自IMEC及两所欧洲名校的Stanislav Tyaginov, Alexander Makarov等10名研究成员为本文共同作者,项目受到“ 欧盟地平线2020 ”科研规划下的“ 玛丽居里学者 ”项目资助。

*热载流子退化 :Hot-carrier degradation,也称热载流子降解,指器件内部的部分载流子受外部影响成为高能热载流子。这些热载流子会打断Si-H 键从而产生界面态,最终导致载流子平均自由时间减少,降低电子迁移率,从而使器件的源漏电流减小。器件关键电学特性的退化随着工作时间的增长而越来越明显,当退化量大于一定程度时便会引起器件乃至整个芯片的失效,带来严重的可靠性问题。

pNWFETs :p型纳米线(nanowire)场效应晶体管,GAA环栅晶体管器件结构的一种。

研究团队提出并验证了一个基于物理学基本原理的自热与热载流子退化(HCD)的建模框架。研究表明,自热对HCD的影响因素是多方面叠加的:一是分布式温度下载流子输运特性,二是温度对化学键振动寿命的依赖关系,三是键解离的热贡献。为了求解自热效应引起的晶格温度变化,团队综合求解了漂移-扩散方程和热流两公式;而温度的非均匀分布对载流子输运的影响表明了使载流子能量分布函数趋向高能量区。本研究团队所扩展得到的框架能够精确再现实验环境下pNWFETs的热载流子退化过程,同时也发现,如果忽视自热效应的影响,那么模型计算所得的HCD效应的严重程度将会大大低于实际观测值。

探索HCD物理机制" img_height="376" img_width="928" data-src="//imgq8.q578.com/ef/0705/6e8e92ed56fb5ca6.jpg" src="/a2020/img/data-img.jpg">

探索HCD物理机制" img_height="553" img_width="862" data-src="//imgq8.q578.com/ef/0705/175e7be8dc6ae6f4.jpg" src="/a2020/img/data-img.jpg"> 探索HCD物理机制" img_height="552" img_width="866" data-src="//imgq8.q578.com/ef/0705/499e6e679a9c6990.jpg" src="/a2020/img/data-img.jpg"> 探索HCD物理机制" img_height="527" img_width="800" data-src="//imgq8.q578.com/ef/0705/24a4fe86e409c77e.jpg" src="/a2020/img/data-img.jpg">

探索HCD物理机制" img_height="700" img_width="945" data-src="//imgq8.q578.com/ef/0705/25c859507db5e3d7.jpg" src="/a2020/img/data-img.jpg">

探索HCD物理机制" img_height="335" img_width="1080" data-src="//imgq8.q578.com/ef/0705/c1386e0c77366ccd.jpg" src="/a2020/img/data-img.jpg">

探索HCD物理机制" img_height="944" img_width="1360" data-src="//imgq8.q578.com/ef/0705/276feeab1dc474be.jpg" src="/a2020/img/data-img.jpg"> 探索HCD物理机制" img_height="944" img_width="1362" data-src="//imgq8.q578.com/ef/0705/0b78b9604e12f986.jpg" src="/a2020/img/data-img.jpg">

*Minimos-NT ,是一款通用型半导体器件模拟软件,可提供任意二维和三维器件几何形状的稳态、瞬态和小信号分析。该软件由维也纳工业大学微电子研究所自主研发,用于集成电路器件的物理特性研究。

IMEC与知名高校KU Leuven和TU Wien通过建立创新物理模型,深入研究纳米线晶体管的自热效应与热载流子退化物理机制间的联系,Nanowire晶体管即将进入量产阶段,预计该成果将会对于未来纳米线晶体管的良率与器件可靠性提升有重要意义,基于该成果的拓展性研发也将会惠及未来Nanosheet和Forksheet器件的工艺研发。

团队带头人Stanislav Tyaginov博士出生于俄罗斯圣彼得堡,于2006年获物理学博士学位,IIRW和IRPS的技术计划委员会成员。他曾主导建设TU Wien微电子研究所的HCD模型开发小组,在科学期刊和会议论文集上发表论文100余篇。目前Tyaginov博士的研究领域包括:晶体管物理模型仿真、基于Si和碳化硅晶体管中的HCD效应研究、BTI和经时击穿的建模以及MOS器件中的隧穿现象。

IMEC,全称:Interuniversity Microelectronics Centre,即比利时微电子研究中心,是一家成立于 1984 年的 科技 研发中心, 总部设在比利时鲁汶。IMEC 的战略定位为纳米电子和数字技术领域全球领先的前瞻性重大创新中心,IMEC 从 2004 年起参与了从45nm到7nm的芯片前沿技术的研发。

维也纳工业大学(TU Wien),前身是维也纳帝国皇家理工学院,是一所作为奥匈帝国皇家学院的 科技 学院建立起来的综合性大学,是德语国家中的第一所 科技 型学府大学。在教学领域和研究领域都得到国际和国内的认可,是欧洲顶尖学府之一。

鲁汶大学(KU Leuven),是比利时最高学府、世界百强名校、欧洲十大名校之一,集成电路相关学科在欧洲名列前茅,与同在比利时的IMEC在集成电路技术研发方面有着深入、全面的合作。

论文原文链接:

https://ieeexplore.ieee.org/document/9260648

联想笔记本可以DDR3L和DDR3混用。

DDR3与DDR3L内存在大多数情况下是兼容的,可以混搭使用,系统会自动对两条不同电压的内zd存做调整。不过最好选用相同品牌,相同频率的内存混合使用。但为了稳定性,建议尽量不要选择DDR3和DDR3L内存混插。

DDR3L属于低压版内存,而DDR3属于标准版内存,双内存混用后,理论上系统会自动对两条不同电压的内存做调整版,两者可互相兼容,混合使用也不会有什么问题。

扩展资料:

挑选内存条,需看这几个指标:

1、存储容量:即一根内存条可以容纳的二进制信息量,如常用的168线内存条的存储容量一般多为32兆、64兆和128兆。而DDRII3普遍为1GB到8GB。

2、存取速度(存储周期)权:即两次独立的存取 *** 作之间所需的最短时间,又称为存储周期,半导体存储器的存取周期一般为60纳秒至100纳秒。

3、存储器的可靠性:存储器的可靠性用平均故障间隔时间来衡量,可以理解为两次故障之间的平均时间间隔。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/9018143.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-24
下一篇 2023-04-24

发表评论

登录后才能评论

评论列表(0条)

保存