云计算和半导体区别

云计算和半导体区别,第1张

云计算是一种实实在在的实现技术,我们知道IT资源有很多,比如我们目前有存储资源,计算资源,计算机,软件,平台,那么IT资源有三种存在形式,一种存在形式集中方式,一种存在形式是分散方式,一种存在形式是分布方式。现在IT数据中心,我们的IT资源是一种分散方式存在的,也就是说设备与设备之间没有关联的。那么云计算实际上是把现在分散存在的设备由网络联系起来,变成一个分布的体系。

半导体指常温下导电性能介于导体与绝缘体之间的材料。半导体在集成电路、消费电子、通信系统、光伏发电、照明、大功率电源转换等领域都有应用,如二极管就是采用半导体制作的器件。无论从科技或是经济发展的角度来看,半导体的重要性都是非常巨大的。大部分的电子产品,如计算机、移动电话或是数字录音机当中的核心单元都和半导体有着极为密切的关联。

云计算和半导体没有任何关联,两者概念上不同,应用前景不同,层次上不同,应用不同。

五一期间,外围又不太平,诸多不切实际的言论导致欧美股以及A50暴跌,不少投资者愉悦的过节心情大打折扣,A股节后的行情也蒙上了一层阴影。

一时间,市场开始充斥悲观言论,短期冲击或许触发获利了结,但在经历了两年的贸易战与年初 历史 罕见的全球暴跌后,这种级别的冲击对A股影响其实有限。

反而很可能导致风向再次改变,节前的盘面已经有了反应, 科技 半导体将重回行情主线,主要有三方面的依据。

第一,根据过去两年多的经验,几乎每次美国针对我国半导体产业搞事情,板块个股都会以上涨作为回应。

比如,2019年8月初贸易战大幅升级,正是这轮半导体翻倍行情的起点。

第二,面对国外言论,我国直接正面应对美国最新出台的半导体出口新规,迅速给予强势回应。

国家多个部门于4月27日联合发布《网络安全审查办法》,并于今年6月1日起正式实施,将对所有来自美国的电子产品进行严格审查,包括微软、谷歌、思科、苹果、高通在内的通讯、电力、互联网公司。

《网络安全审查办法》的落地将会加大国外产品进入国内关键信息基础设施领域的难度,国产替代进程将会进一步加速,意味着相比较2018年贸易战之初,当前我国半导体行业的技术水平已经提高了不少。

第三,A股近七成半导体公司一季报实现正常增长(超过了医药、消费行业),龙头公司的业绩不仅未受疫情影响,而且大幅超出了市场的预期。

韦尔股份:一季度净利润4.45亿元,同比增长800%,公司海外收入占比75%,是全球第三大CIS厂商,CIS产品线丰富。

华天 科技 :一季度净利润0.63亿元,同比增长276%,公司海外收入占比59%,是封测龙头之一,产能位居内资专业封装企业的第三位,二季度订单爆满。

卓胜微:一季度净利润1.52亿元,同比增长263%,公司海外收入占比72%,是射频龙头,高通芯片供应商,新增4家本土制造和封测厂。

紫光国微:一季度净利润1.9亿元,同比增长183%,公司海外收入占比19%,聚焦逻辑芯片主业,是国内稀缺的高端FPGA+特种IC领军企业。

南大光电:一季度净利润0.35亿元,同比增长123%,公司海外收入占比14%,是光刻胶领域龙头之一。

圣邦股份:一季度净利润0.3亿元,同比增长91%,公司基本上没有海外收入,产品单价与毛利率双双提升,受益国产替代浪潮。

江丰电子 :一季度净利润 0.17亿元,同比增长56%,公司海外收入占比71%(逐步降低),是国内溅射靶材龙头,进口替代空间巨大,十分受益于国产替代。

中颖电子 :一季度净利润0.42亿元,同比增长30%,公司海外收入占比29%,是国产家电MCU主控芯片的领军企业,受益于国产替代份额明显提升。

以上分析是板块可能爆发的短期逻辑,实际上,半导体产业具备很强的长期逻辑。

一是,5G的建设及应用会给半导体行业带来巨大的增量。

5G通信网络需搭建基站,设备发射信号,需要大量的半导体。以5G为基础衍生的大数据,智慧城市,云计算,医疗IT化,政务IT化,无人驾驶等时髦的应用要在计算机等终端上跑起来,需要更多的半导体部件。

二是,国产替代空间非常大。

根据2019年的统计数据,我国半导体的自给自足率只有10%-15%。贸易战开始之后,这些订单就开始向欧洲、日韩转移,更多的是国内企业转移。以前的国产比例只有10%-15%,现在如果要达到30%,就是翻倍的需求。

今年受疫情的影响,全球半导体行业开始重塑,短期内欧洲企业很难开工,日韩也有部分产能受到严重影响,国产替代反而迎来了加速发展的机会。

综合看来,半导体板块具备长短期逻辑,很可能是接下来可 *** 作的方向之一。

现阶段参与半导体公司可以从以下三个维度选取标的。

一是,公司的技术或者产品属于国内第一梯队,营业收入的绝大部分来自国内;

二是,一季报业绩增速良好(最好高于行业平均水平),并且预期中报业绩可以持续高增长;

三是,前期股性好,受到过资金的热烈追捧,且技术上阶段筑底牢固。

过去几十年,全球半导体行业增长主要受台式机、笔记本电脑和无线通信产品等尖端电子设备的需求,以及基于云计算兴起的推动。这些增长将继续为高性能计算市场领域开发新应用程序。

首先,5G将让数据量呈指数级增长。我们需要越来越多的服务器来处理和存储这些数据。2020年Yole报告,这些服务器核心的高端CPU和GPU的复合年增长率有望达到29%。它们将支持大量的数据中心应用,比如超级计算和高性能计算服务。在云 游戏 和人工智能等新兴应用的推动下,GPU预计将实现更快增长。例如,2020年3月,互联网流量增长了近50%,法兰克福的商业互联网数据交换创下了数据吞吐量超过每秒9.1兆兆位的新世界纪录。

第二个主要驱动因素是移动SoC——智能手机芯片。这个细分市场增长虽然没有那么快, 但这些SoC在尺寸受限的芯片领域对更多功能的需求,将推动进一步技术创新。

除了逻辑、内存和3D互联的传统维度扩展之外,这些新兴应用程序将需要利用跨领域的创新。这需要在器件、块和SoC级别进行新模块、新材料和架构的改变,以实现在系统级别的效益。我们将这些创新归纳为半导体技术的五大发展趋势。

趋势一:摩尔定律还有用,将为半导体技术续命8到10年…

在接下来的8到10年里,CMOS晶体管的密度缩放将大致遵循摩尔定律。这将主要通过EUV模式和引入新器件架构来实现逻辑标准单元缩放。

在7nm技术节点上引入了极紫外(EUV)光刻,可在单个曝光步骤中对一些最关键的芯片结构进行了设计。在5nm技术节点之外(即关键线后端(BEOL)金属节距低于28-30nm时),多模式EUV光刻将不可避免地增加了晶圆成本。最终,我们希望高数值孔径(High-NA) EUV光刻技术能够用于行业1nm节点的最关键层上。这种技术将推动这些层中的一些多图案化回到单图案化,从而提供成本、产量和周期时间的优势。

Imec对随机缺陷的研究对EUV光刻技术的发展具有重要意义。随机打印故障是指随机的、非重复的、孤立的缺陷,如微桥、局部断线、触点丢失或合并。改善随机缺陷可使用低剂量照射,从而提高吞吐量和成本。

为了加速高NA EUV的引入,我们正在安装Attolab,它可以在高NA EUV工具面世之前测试一些关键的高NA EUV材料(如掩膜吸收层和电阻)。目前Attolab已经成功地完成了第一阶段安装,预计在未来几个月将出现高NA EUV曝光。

除了EUV光刻技术的进步之外,如果没有前沿线端(FEOL)设备架构的创新,摩尔定律就无法延续。如今,FinFET是主流晶体管架构,最先进的节点在6T标准单元中有2个鳍。然而,将鳍片长度缩小到5T标准单元会导致鳍片数量减少,标准单元中每个设备只有一个鳍片,导致设备的单位面积性能急剧下降。这里,垂直堆叠纳米薄片晶体管被认为是下一代设备,可以更有效地利用设备占用空间。另一个关键的除垢助推器是埋地动力轨(BPR)。埋在芯片的FEOL而不是BEOL,这些BPR将释放互连资源路由。

将纳米片缩放到2nm一代将受到n-to-p空间约束的限制。Imec设想将Forksheet作为下一代设备。通过用电介质墙定义n- p空间,轨道高度可以进一步缩放。与传统的HVH设计相反,另一个有助于提高路由效率的标准单元架构发展是针对金属线路的垂直-水平-垂直(VHV)设计。最终通过互补场效应晶体管(CFET)将标准cell缩小到4T,之后充分利用cell层面上的第三维度,互补场效应晶体管通过将n-场效应晶体管与p-场效应晶体管折叠。

趋势2: 在固定功率下,逻辑性能的提高会慢下来

有了上述的创新,我们期望晶体管密度能遵循摩尔所规划的路径。但是在固定电源下,节点到节点的性能改进——被称Dennard缩放比例定律,Dennard缩放比例定律(Dennard scaling)表明,随着晶体管变得越来越小,它们的功率密度保持不变,因此功率的使用与面积成比例;电压和电流的规模与长度成比例。

世界各地的研究人员都在寻找方法来弥补这种减速,并进一步提高芯片性能。上述埋地电力轨道预计将提供一个性能提高在系统水平由于改进的电力分配。此外,imec还着眼于在纳米片和叉片装置中加入应力,以及提高中线的接触电阻(MOL)。

二维材料如二硫化钨(WS2)在通道中有望提高性能,因为它们比Si或SiGe具有更强的栅长伸缩能力。其中基于2d的设备架构包括多个堆叠的薄片非常有前景,每个薄片被一个栅极堆叠包围并从侧面接触。模拟表明,这些器件在1nm节点或更大节点上比纳米片的性能更好。为了进一步改善这些器件的驱动电流,我们着重改善通道生长质量,在这些新材料中加入掺杂剂和提高接触电阻。我们试图通过将物理特性(如生长质量)与电气特性相关联来加快这些设备的学习周期。

除了FEOL, 走线拥挤和BEOL RC延迟,这些已经成为性能改善的重要瓶颈。为了提高通径电阻,我们正在研究使用Ru或Mo的混合金属化。我们预计半镶嵌(semi-damascene)金属化模块可同时改善紧密距金属层的电阻和电容。半镶嵌(semi-damascene) 可通过直接模式和使用气隙作为介电在线路之间(控制电容增加)

允许我们增加宽高比的金属线(以降低电阻)。同时,我们筛选了各种替代导体,如二元合金,它作为‘good old’ Cu的替代品,以进一步降低线路电阻。

趋势3:3D技术使更多的异构集成成为可能

在工业领域,通过利用2.5D或3D连接的异构集成来构建系统。这些有助于解决内存问题,可在受形状因素限制的系统中添加功能,或提高大型芯片系统的产量。随着逻辑PPAC(性能-区域-成本)的放缓,SoC 的智能功能分区可以提供另一个缩放旋钮。一个典型的例子是高带宽内存栈(HBM),它由堆叠的DRAM芯片组成,这些芯片通过短的interposer链路直接连接到处理器芯片,例如GPU或CPU。最典型的案例是Intel Lakefield CPU上的模对模堆叠, AMD 7nm Epyc CPU。在未来,我们希望看到更多这样的异构SOC,它是提高芯片性能的最佳桥梁。

在imec,我们通过利用我们在不同领域(如逻辑、内存、3D…)所进行的创新,在SoC级别带来了一些好处。为了将技术与系统级别性能联系起来,我们建立了一个名为S-EAT的框架(用于实现高级技术的系统基准测试)。这个框架可评估特定技术对系统级性能的影响。例如:我们能从缓存层次结构较低级别的片上内存的3D分区中获益吗?如果SRAM被磁存储器(MRAM)取代,在系统级会发生什么?

为了能够在缓存层次结构的这些更深层次上进行分区,我们需要一种高密度的晶片到晶片的堆叠技术。我们已经开发了700nm间距的晶圆-晶圆混合键合,相信在不久的将来,键合技术的进步将使500nm间距的键合成为可能。

通过3D集成技术实现异质集成。我们已经开发了一种基于sn的微突起互连方法,互连间距降低到7µm。这种高密度连接充分利用了透硅通孔技术的潜力,使>16x更高的三维互联密度在模具之间或模具与硅插接器之间成为可能。这样就大大降低了对HBM I/O接口的SoC区域需求(从6 mm2降至1 mm2),并可能将HBM内存栈的互连长度缩短至多1 mm。使用混合铜键合也可以将模具直接与硅结合。我们正在开发3µm间距的模具到晶圆的混合键合,它具有高公差和放置精度。

由于SoC变得越来越异质化,一个芯片上的不同功能(逻辑、内存、I/O接口、模拟…)不需要来自单一的CMOS技术。对不同的子系统采用不同的工艺技术来优化设计成本和产量可能更有利。这种演变也可以满足更多芯片的多样化和定制化需求。

趋势4:NAND和DRAM被推到极限非易失性存储器正在兴起

内存芯片市场预测显示,2020年内存将与2019年持平——这一变化可能部分与COVID-19减缓有关。2021年后,这个市场有望再次开始增长。新兴非易失性存储器市场预计将以>50%的复合年增长率增长,主要受嵌入式磁随机存取存储器(MRAM)和独立相变存储器(PCM)的需求推动。

NAND存储将继续递增,在未来几年内可能不会出现颠覆性架构变化。当今最先进的NAND产品具有128层存储能力。由于晶片之间的结合,可能会产生更多的层,从而使3D扩展继续下去。Imec通过开发像钌这样的低电阻字线金属,研究备用存储介质堆,提高通道电流,并确定控制压力的方法来实现这一路线图。我们还专注于用更先进的FinFET器件取代NAND外围的平面逻辑晶体管。我们正在 探索 3D FeFET与新型纤锌矿材料,作为3D NAND替代高端存储应用。作为传统3D NAND的替代品,我们正在评估新型存储器的可行性。

对于DRAM,单元缩放速度减慢,EUV光刻可能需要改进图案。三星最近宣布EUV DRAM产品将用于10nm (1a)级。除了 探索 EUV光刻用于关键DRAM结构的模式,imec还为真正的3D DRAM解决方案提供了构建模块。

在嵌入式内存领域,我通过大量的努力来理解并最终拆除所谓的内存墙,CPU从DRAM或基于SRAM的缓存中访问数据的速度有多快?如何确保多个CPU核心访问共享缓存时的缓存一致性?限制速度的瓶颈是什么? 我们正在研究各种各样的磁随机存取存储器(MRAM),包括自旋转移转矩(STT)-MRAM,自旋轨道转矩(SOT)-MRAM和电压控制磁各向异性(VCMA)-MRAM),以潜在地取代一些传统的基于SRAM的L1、L2和L3缓存(图4)。每一种MRAM存储器都有其自身的优点和挑战,并可能通过提高速度、功耗和/或内存密度来帮助我们克服内存瓶颈。为了进一步提高密度,我们还在积极研究可与磁隧道结相结合的选择器,这些是MRAM的核心。

趋势5:边缘人工智能芯片行业崛起

边缘 AI预计在未来五年内将实现100%的增长。与基于云的人工智能不同,推理功能是嵌入在位于网络边缘的物联网端点(如手机和智能扬声器)上的。物联网设备与一个相对靠近边缘服务器进行无线通信。该服务器决定将哪些数据发送到云服务器(通常是时间敏感性较低的任务所需的数据,如重新培训),以及在边缘服务器上处理哪些数据。

与基于云的AI(数据需要从端点到云服务器来回移动)相比,边缘 AI更容易解决隐私问题。它还提供了响应速度和减少云服务器工作负载的优点。想象一下,一辆需要基于人工智能做出决定的自动 汽车 。由于需要非常迅速地做出决策,系统不能等待数据传输到服务器并返回。考虑到通常由电池供电的物联网设备施加的功率限制,这些物联网设备中的推理引擎也需要非常节能。

今天,商业上可用的边缘 AI芯片,加上快速GPU或ASIC,可达到1-100 Tops/W运算效率。对于物联网的实现,将需要更高的效率。Imec的目标是证明推理效率在10.000个Tops /W。

通过研究模拟内存计算架构,我们正在开发一种不同的方法。这种方法打破了传统的冯·诺伊曼计算模式,基于从内存发送数据到CPU(或GPU)进行计算。使用模拟内存计算,节省了来回移动数据的大量能量。2019年,我们演示了基于SRAM的模拟内存计算单元(内置22nm FD-SOI技术),实现了1000Tops/W的效率。为了进一步提高到10.000Tops/W,我们正在研究非易失性存储器,如SOT-MRAM, FeFET和基于IGZO(铟镓锌氧化物)的存储器。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/9023381.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-24
下一篇 2023-04-24

发表评论

登录后才能评论

评论列表(0条)

保存