研究要点
1.首先总结了二维(2D)光电探测器中典型的光电探测机制类型。2.然后讨论了基于传统硅和III-V族化合物半导体的碰撞电离和雪崩光电探测器引起的雪崩机理。3.最后,详细介绍了一系列基于2D材料及其范德华异质结构的新兴雪崩光电探测器,及其在光子计数技术领域的潜在应用。4.回顾了最近的研究进展并讨论2D雪崩光电探测器所面临的挑战,并为2D超灵敏光电探测器(如单光子探测器)未来的研究方向提供了一些观点。
研究背景
光电探测器是当今使用最广泛的技术之一。它们已被广泛用于传感器,接收来自遥控器的红外信号的接收器,光纤连接中的光电二极管,手机或照相机中的图像传感器以及太空 探索 的焦平面阵列等领域。由常规的半导体(例如硅,InGaAs,InSb,HgCdTe等)构建的光电探测器可以检测从可见光到中长波红外的光子。在过去的几十年中,材料的研究和器件制造技术日趋成熟,使得研究具有更高检测率,较快速响应速率和高分辨率的更先进的光电探测器成为了可能。但是,在可穿戴电子设备,智能机器人技术,无人飞行器(UAV)或自动驾驶 汽车 等新兴领域,迫切需要轻巧、不冷却并且具有机械柔性的光电探测器。近几年,二维(2D)层状材料已引起光电探测器界的巨大研究兴趣,与传统的块状材料相比,它具有自钝化表面,强光-物质耦合,可调费米能级和机械柔韧性等特性。无带隙的二维层状石墨烯可以与波长范围从紫外线到微波的光发生相互作用,因此它在宽光谱范围内进行各种类型的光检测具有非常大的潜力。 然而,其无带隙的特性无法实现具有高信噪比的光电检测器。 2D过渡金属二卤化金属(TMD)具有随厚度变化的能带隙,主要在可见光到近红外范围内表现出高效的光电检测特性。对此,2D层状材料与其他nD材料(n = 0、1和3)的组合所形成的范德华异质结构,可以实现各种光电探测器。二维层状材料由于其原子尺度薄的特性从而具有较低的光吸收系数。实现载流子倍增的碰撞电离是设计具有高检测效率的二维光电探测器的有前途的策略。然而,在二维光电探测器中通过碰撞电离产生的雪崩效应尚未得到广泛研究。
核心内容
有鉴于此, 中科院上海技术物理研究所的Jinshui Miao课题组和美国华盛顿大学的Chuan Wang课题组对由二维层状材料及其范德华异质结构构成的雪崩光电探测器进行了综述,重点介绍了其在单光子计数技术领域的潜在应用。
要点1. 二维光探测器的机制
二维范德华力异质结光电探测器通常受光伏效应的支配,光伏效应是指光生载流子在异质结,同质结或肖特基结中被内部电场分离至结两端聚集产生电势差的现象。在WSe2/MoS2 p-n结中,光子在WSe2和MoS2中被吸收,从而在每一层中产生电子-空穴对。然后,电子和空穴通过内置场在整个p-n结处空间分离。最后,松弛的载流子横向扩散至源极和漏极触点,从而导致光电流。
在载流子扩散期间,可能发生层间复合这降低了2D光电探测器的效率。在这种类型的2D MoS2器件中,光电效应导致晶体管阈值电压发生偏移,因为电荷从沟道转移到附近的分子。
光电导效应归因于载流子在二维MoS2的带尾态中的俘获。在二维MoS2光电探测器中,金电极和单层MoS2具有不同的塞贝克系数。激光的局部吸收会导致MoS2通道和金电极之间结的局部加热。在独立的聚酰亚胺薄膜上制造基于2D BP的柔性光电探测器,其导热系数约为0.2 W /(m·K)。聚酰亚胺的导热率明显低于导热率约为150 W /(m·K)的硅。入射激光会在2D BP设备下方产生局部加热点,因此由于增强的声子散射,载流子迁移率会降低,因此会导致负光电流。
要点2. 雪崩光电二极管的机制
雪崩光电二极管是一种极其灵敏的光电探测器,可以将光转换为电流或电压信号。雪崩光电二极管通常在数十甚至数百伏的相对较高的反向偏置电压下运行。在这种情况下,光生电子-空穴对通过电场加速,因此它们可以通过碰撞电离产生更多的载流子。雪崩过程仅在几微米之内发生,并且可以有效地将光电流放大较高的比例。因此,雪崩光电二极管可以用作极其灵敏的检测器。
硅雪崩光电二极管的载流子倍增因子在50和1,000之间变化。为了检测1100nm之上的红外波长,基于III-V族化合物或锗半导体的雪崩光电二极管是不错的选择。基于InGaAs的雪崩光电二极管比基于锗的雪崩光电二极管昂贵,但具有更低的噪声和更高的检测带宽。
此外,InGaAs半导体具有很高的吸收系数,这允许使用相当薄的吸收层。当雪崩光电二极管通过外部淬灭电子器件在Geiger模式下运行时,甚至可以用于单光子计数技术。硅基单光子雪崩检测器(SPAD)具有低于1 kHz的超低暗计数率和高于50%的检测效率。在实际应用中,必须使用外部淬火电子器件在短时间内将偏置电压重置为击穿阈值以下,以便可以停止雪崩过程,并且可以将SPAD用于检测另一个入射光子。
要点3. 由常规半导体制成的雪崩光电二极管
3.1 硅基单光子雪崩光电二极管
由块状硅半导体制成的SPAD显示出高量子效率(>50%),这是因为其较厚的光子吸收层(30–50μm)。但是,厚吸收层限制了它的频率响应,因此将硅SPAD的定时分辨率限制在100 ps的水平。对于与时间相关的光子计数技术,需要使用更薄的硅(1–10μm)来将时序分辨率提高到20ps以下。但是,厚结SPAD和薄结SPAD之间需要权衡取舍。厚结SPAD通常具有较高的检测效率,但定时抖动较差(光子吸收与SPAD产生输出电脉冲之间的时间间隔的变化);而薄结SPAD的检测效率较低,但定时抖动好。
3.2 基于III-V族半导体的单光子雪崩光电二极管
基于硅的SPAD只能检测波长高达1100 nm左右的光子,因为硅半导体的带隙为1.1 eV。为了将检测波长扩展到电信范围,必须使用窄带隙半导体。诸如InGaAs的III-V半导体的带隙约为0.7 eV,这是用于红外单光子检测的有前途的候选材料。基于InGaAs / InP的SPAD的代表性器件结构,i-InGaAs的带隙约为0.7 eV,用作光子吸收层;InP的带隙约为1.4 eV,p + -InP / i-InP同质结用作载流子倍增区。所有的InGaAs / InP SPAD均基于单独的吸收,电荷和倍增(SACM)区域结构。倍增区保持高电场以启动雪崩增益,而吸收区保持足够低的电场以最小化场感应泄漏电流。该设备通常在150至220 K的温度范围内工作,暗计数率低至3 kHz,在1至1.6μm波长范围内的检测效率高达45%,时序抖动低至30 ps。
3.3基于1D半导体纳米线的雪崩光电探测器
用纳米级光电导或光电器件进行检测具有相对较差的灵敏度,因此需要大的放大倍数才能检测弱光并最终检测单个光子。一维纳米线雪崩光电二极管具有超高的灵敏度,检测极限小于100个光子,可重现的高倍增倍数高达7 104。此外,一维半导体纳米线提供了将光量子点与雪崩二极管结合在一起的独特可能性,从而实现了将单个光子转换为宏观电流以进行有效的电检测。此外,一维纳米线雪崩光电二极管也可用于单光子检测。
2019年,A. C. Farrell等报道了一个新的吸收和倍增雪崩光电二极管平台,该平台由InGaAs / GaAs异质结纳米线阵列组成,用于单光子检测。InGaAs / GaAs纳米线雪崩光电二极管的暗计数率低至10 Hz,光子计数率低至7.8 MHz,时序抖动小于113 ps。然而,InGaAs / GaAs纳米线雪崩光电二极管中的低温 *** 作限制了其广泛的适用性。
为此,S. J. Gibson等提出了一种使用锥形InP纳米线p-n结阵列的方法,用于在室温下进行有效的宽带高速单光子检测。截断的圆锥形纳米线结构实现了宽带光响应,其外部量子效率超过85%,增益超过105,并且在20 ps以下具有出色的定时抖动。这种基于1D量子纳米线的纳米级雪崩光电探测器为量子通信,遥感和癌症治疗剂量监测等应用提供了新的可能性。
要点4. 由二维层状材料制成的雪崩光电二极管
原子厚度的2D材料因其卓越的光电性能而吸引了光电探测器界的极大研究兴趣。然而,基于2D材料的光电探测器总是受光吸收系数低的困扰,限制了它们的实际应用。为了在2D光电探测器中实现高增益,可以使用支持电生载流子倍增的碰撞电离。
此外,二维材料由于其原子薄的特性,可能在较短的有源区域(
雪崩光电二极管是一种p-n结型的光检测二极管,其中利用了载流子的雪崩倍增效应来放大光电信号以提高检测的灵敏度。其基本结构常常采用容易产生雪崩倍增效应的Read二极管结构(即N+PIP+型结构,P+一面接收光),工作时加较大的反向偏压,使得其达到雪崩倍增状态;它的光吸收区与倍增区基本一致(是存在有高电场的P区和I区)。
P-N结加合适的高反向偏压,使耗尽层中光生载流子受到强电场的加速作用获得足够高的动能,它们与晶格碰撞电离产生新的电子一空穴对,这些载流子又不断引起新的碰撞电离,造成载流子的雪崩倍增,得到电流增益。在0.6~0.9μm波段,硅APD具有接近理想的性能。InGaAs(铟镓砷)/InP(铟磷)APD是长波长(1.3μn,1.55μm)波段光纤通信比较理想的光检测器。其优化结构如图所示,光的吸收层用InGaAs材料,它对1.3μm和1.55μn的光具有高的吸收系数,为了避免InGaAs同质结隧道击穿先于雪崩击穿,把雪崩区与吸收区分开,即P-N结做在InP窗口层内。鉴于InP材料中空穴离化系数大于电子离化系数,雪崩区选用n型InP,n-InP与n-InGaAs异质界面存在较大价带势垒,易造成光生空穴的陷落,在其间夹入带隙渐变的InGaAsP(铟镓砷磷)过渡区,形成SAGM(分别吸收、分级和倍增)结构。
在APD制造上,需要在器件表面加设保护环,以提高反向耐压性能;半导体材料以Si为优(广泛用于检测0.9um以下的光),但在检测1um以上的长波长光时则常用Ge和InGaAs(噪音和暗电流较大)。这种APD的缺点就是存在有隧道电流倍增的过程,这将产生较大的散粒噪音(降低p区掺杂,可减小隧道电流,但雪崩电压将要提高)。一种改进的结构是所谓SAM-APD:倍增区用较宽禁带宽度的材料(使得不吸收光),光吸收区用较窄禁带宽度的材料;这里由于采用了异质结,即可在不影响光吸收区的情况下来降低倍增区的掺杂浓度,使得其隧道电流得以减小(如果是突变异质结,因为ΔEv的存在,将使光生空穴有所积累而影响到器件的响应速度,这时可在突变异质结的中间插入一层缓变层来减小ΔEv的影响)。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)