芯片在电子学中是一种将电路(主要包括半导体设备,也包括被动组件等)小型化或微型化的方式,时常制造在半导体晶圆表面上。从结构上看,芯片由大规模集成电路、阻容元件、保护电路、稳压电路、封装材料等组成。metro是metrology的简称,是半导体芯片过程
工艺控制的一种,在前道测试设备也称作过程工艺控制中(Semiconductorprocesscontrol),可以进一步细分为缺陷检测(inspection)和量测(metrology)主要进行物理和功能性方面的测试,在晶圆生产过程中,每完成一步工艺都需要用相应的测试设备来检测产品良率和缺陷。在65nm时代,漏电一直是降低处理器良品率、阻碍性能提升和减少
功耗的重要因素。而随着处理器采用了45nm工艺,相应的核心面积会减少,导致单位面积的能量密度大幅增高,漏电问题将更加凸显,如果不很好解决,功耗反而会随之增大。而传统的二氧化硅栅极介电质的工艺已遇到瓶颈,无法满足45nm处理器的要求,因此为了能够很好的解决漏电问题,Intel采用了铪基High-K(高K)栅
电介质+Metal Gate(金属栅)电极叠层技术。
相比传统工艺,High-K金属栅极工艺可使漏电减少10倍之多,使功耗也能得到很好的控制。而且,如果在相同功耗下,理论上性能可提升20%左右。正是得益于这种新技术,Intel的45nm工艺在令晶体管密度提升近2倍,增加处理器的晶体管总数或缩小处理器体积的同时,还能提供更高的性能和更低的功耗,令产品更具竞争力。
此外,我们要知道High-K栅电介质技术,相比以往的氮氧化合物/多晶硅栅堆叠技术成本会有所增加,而Intel为了保持工艺技术上的领先,不惜高成本采用了High-K栅电介质技术,我们也可以看出Intel对45nm处理器能否取得成功相当重视。而由于High-k闸极电介质和现有硅闸极并不兼容,Intel全新45nm晶体管设计也必须开发新金属闸极材料,目前新金属的细节仍属商业机密,Intel现阶段尚未说明其金属材料的组合。
评论列表(0条)