有机半导体和无机半导体的异同点

有机半导体和无机半导体的异同点,第1张

不同点:

一、本质不同。

有机半导体是有机合成的,无机半导体是无机合成的。

二、成膜技术不同。

有机半导体的成膜技术比无机半导体更多、更新。

三、性能不同。

有机半导体比无机半导体呈现出更好的柔韧性,而且质量更轻。有机场效应器件也比无机的制作工艺也更为简单。

相同点:运用范围相同,都是主要运用在收音机、电视机和测温上。

扩展资料

无机合成物半导体。无机合成物主要是通过单一元素构成半导体材料,当然也有多种元素构成的半导体材料,主要的半导体性质有I族与V、VI、VII族;II族与IV、V、VI、VII族;III族与V、VI族;IV族与IV、VI族;V族与VI族;VI族与VI族的结合化合物。

但受到元素的特性和制作方式的影响,不是所有的化合物都能够符合半导体材料的要求。这一半导体主要运用到高速器件中,InP制造的晶体管的速度比其他材料都高,主要运用到光电集成电路、抗核辐射器件中。 对于导电率高的材料,主要用于LED等方面。

有机合成物半导体。有机化合物是指含分子中含有碳键的化合物,把有机化合物和碳键垂直,叠加的方式能够形成导带,通过化学的添加,能够让其进入到能带,这样可以发生电导率,从而形成有机化合物半导体。

这一半导体和以往的半导体相比,具有成本低、溶解性好、材料轻加工容易的特点。可以通过控制分子的方式来控制导电性能,应用的范围比较广,主要用于有机薄膜、有机照明等方面。

参考资料:百度百科-半导体

可以。

研究人员利用溶液过饱和度、气相扩散温度梯度、表面纳米沟槽等诱导效应,对有机半导体晶相生长的热力学和动力学过程进行调控,获得了堆积结构紧密的单晶或晶态膜,表现出非常高的载流子迁移率。通过选择不同的溶液浓度控制其过饱和度,首次可控地制备了硫杂并苯衍生物的不同晶相的单晶。β晶体(HOMO-1)能级之间的电子耦合作用明显高于α晶体,并对电荷传输性能起主导作用,导致β单晶载流子迁移率高达18.9 cm2 V-1 s-1,证实了不同的堆积结构能造成非简并(HOMO-1)能级电子耦合作用的显著差异,从而对电荷传输产生重要的影响,为有机半导体堆积结构的调控提供了一种新的理念和思路(Adv. Mater. 2015, 27, 825)。

进一步采用物理气相传输的方法,通过控制温度梯度,第一次选择性地得到了酞菁氧钛的α和β两个晶相的单晶,构筑了单晶场效应晶体管。α晶相具有典型的二维电荷传输通道,最高载流子迁移率为26.8 cm2 V-1 s-1,是酞氰类有机半导体的最高值。β晶相具有三维电荷传输通道,层与层之间具有较强的电子耦合作用,其方向与电荷传输方向垂直,干扰了电荷传输行为,只获得了最高0.1 cm2 V-1 s-1的迁移率。这一发现突破了“三维电荷传输半导体优于低维半导体”的传统看法,说明了分子层间的电子耦合作用对于电荷输运具有重要的影响。

最近研究人员发现聚酰亚胺PI的热前驱体聚酰胺酸PAA薄膜表面强极性和纳米沟槽结构能选择性诱导并五苯分子站立生长,聚集形成有利于电荷传输的正交相,并且能进一步形成尺寸大、晶界少的高晶态薄膜,迁移率高达30.6 cm2 V-1 s-1,是迄今为止并五苯薄膜器件的最高值,也是有机半导体最高迁移率的少数例子之一。

半导体是指一种导电性可受控制,范围可从绝缘体至导体之间的材料。无论从科技或是经济发展的角度来看,半导体的重要性都是非常巨大的。很多人一直有疑问,半导体材料有哪些? 半导体材料有哪些实际运用?今天小编精心搜集整理了相关资料,来专门解答大家关于半导体材料的疑问,下面一起来看一下吧!

一、半导体材料有哪些?

常用的半导体材料分为元素半导体和化合物半导体。元素半导体是由单一元素制成的半导体材料。主要有硅、锗、硒等,以硅、锗应用最广。化合物半导体分为二元系、三元系、多元系和有机化合物半导体。二元系化合物半导体有Ⅲ-Ⅴ族(如砷化镓、磷化镓、磷化铟等)、Ⅱ-Ⅵ族(如硫化镉、硒化镉、碲化锌、硫化锌等)、Ⅳ-Ⅵ族(如硫化铅、硒化铅等)、Ⅳ-Ⅳ族(如碳化硅)化合物。三元系和多元系化合物半导体主要为三元和多元固溶体,如镓铝砷固溶体、镓锗砷磷固溶体等。有机化合物半导体有萘、蒽、聚丙烯腈等,还处于研究阶段。

此外,还有非晶态和液态半导体材料,这类半导体与晶态半导体的最大区别是不具有严格周期性排列的晶体结构。制备不同的半导体器件对半导体材料有不同的形态要求,包括单晶的切片、磨片、抛光片、薄膜等。半导体材料的不同形态要求对应不同的加工工艺。常用的半导体材料制备工艺有提纯、单晶的制备和薄膜外延生长。

  二、半导体材料主要种类

半导体材料可按化学组成来分,再将结构与性能比较特殊的非晶态与液态半导体单独列为一类。按照这样分类方法可将半导体材料分为元素半导体、无机化合物半导体、有机化合物半导体和非晶态与液态半导体。

1、元素半导体:在元素周期表的ⅢA族至ⅦA族分布着11种具有半导性半导体材料的元素,下表的黑框中即这11种元素半导体,其中C表示金刚石。C、P、Se具有绝缘体与半导体两种形态B、Si、Ge、Te具有半导性Sn、As、Sb具有半导体与金属两种形态。

2、无机化合物半导体:分二元系、三元系、四元系等。 二元系包括:①Ⅳ-Ⅳ族:SiC和Ge-Si合金都具有闪锌矿的结构。

  3、有机化合物半导体:已知的有机半导体有几十种,熟知的有萘、蒽、聚丙烯腈、酞菁和一些芳香族化合物等,它们作为半导体尚未得到应用。

  4、非晶态与液态半导体:这类半导体与晶态半导体的最大区别是不具有严格周期性排列的晶体结构。

  三、半导体材料实际运用

制备不同的半导体器件对半导体材料有不同的形态要求,包括单晶的切片、磨片、抛光片、薄膜等。半导体材料的不同形态要求对应不同的加工工艺。常用的半导体材料制备工艺有提纯、单晶的制备和薄膜外延生长。

半导体材料所有的半导体材料都需要对原料进行提纯,要求的纯度在6个“9”以上,最高达11个“9”以上。提纯的方法分两大类,一类是不改变材料的化学组成进行提纯,称为物理提纯另一类是把元素先变成化合物进行提纯,再将提纯后的化合物还原成元素,称为化学提纯。物理提纯的方法有真空蒸发、区域精制、拉晶提纯等,使用最多的是区域精制。化学提纯的主要方法有电解、络合、萃取、精馏等,使用最多的是精馏。由于每一种方法都有一定的局限性,因此常使用几种提纯方法相结合的工艺流程以获得合格的材料。

绝大多数半导体器件是在单晶片或以单晶片为衬底的外延片上作出的。成批量的半导体单晶都是用熔体生长法制成的。直拉法应用最广,80%的硅单晶、大部分锗单晶和锑化铟单晶是用此法生产的,其中硅单晶的最大直径已达300毫米。在熔体中通入磁场的直拉法称为磁控拉晶法,用此法已生产出高均匀性硅单晶。在坩埚熔体表面加入液体覆盖剂称液封直拉法,用此法拉制砷化镓、磷化镓、磷化铟等分解压较大的单晶。悬浮区熔法的熔体不与容器接触,用此法生长高纯硅单晶。水平区熔法用以生产锗单晶。水平定向结晶法主要用于制备砷化镓单晶,而垂直定向结晶法用于制备碲化镉、砷化镓。用各种方法生产的体单晶再经过晶体定向、滚磨、作参考面、切片、磨片、倒角、抛光、腐蚀、清洗、检测、封装等全部或部分工序以提供相应的晶片。

以上就是小编今天给大家分享的半导体材料的有关信息,主要分析了半导体材料的种类和应用等问题,希望大家看后会有帮助!想要了解更多相关信息的话,大家就请继续关注土巴兔学装修吧!


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/9050687.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-24
下一篇 2023-04-24

发表评论

登录后才能评论

评论列表(0条)

保存