1.第一代半导体材料主要是指硅(Si)、锗元素(Ge)半导体材料。作为第一代半导体材料的锗和硅,在国际信息产业技术中的各类分立器件和应用极为普遍的集成电路、电子信息网络工程、电脑、手机、电视、航空航天、各类军事工程和迅速发展的新能源、硅光伏产业中都得到了极为广泛的应用,硅芯片在人类社会的每一个角落无不闪烁着它的光辉。
2.第二代半导体材料主要是指化合物半导体材料,如砷化镓(GaAs)、锑化铟(InSb);三元化合物半导体,如GaAsAl、GaAsP;还有一些固溶体半导体,如Ge-Si、GaAs-GaP;玻璃半导体(又称非晶态半导体),如非晶硅、玻璃态氧化物半导体;有机半导体,如酞菁、酞菁铜、聚丙烯腈等。
3.第三代半导体材料主要以碳化硅(SiC)、氮化镓(GaN)、氧化锌(ZnO)、金刚石、氮化铝(AlN)为代表的宽禁带半导体材料。在应用方面,根据第三代半导体的发展情况,其主要应用为半导体照明、电力电子器件、激光器和探测器、以及其他4个领域,每个领域产业成熟度各不相同。在前沿研究领域,宽禁带半导体还处于实验室研发阶段。
扩展资料
Si和化合物半导体是两种互补的材料,化合物的某些性能优点弥补了Si晶体的缺点,而Si晶体的生产工艺又明显的有不可取代的优势,且两者在应用领域都有一定的局限性,因此在半导体的应用上常常采用兼容手段将这二者兼容,取各自的优点,从而生产出符合更高要求的产品,如高可靠、高速度的国防军事产品。因此第一、二代是一种长期共同的状态。
但是第三代宽禁带半导体材料,可以被广泛应用在各个领域,消费电子、照明、新能源汽车、导d、卫星等,且具备众多的优良性能可突破第一、二代半导体材料的发展瓶颈,故被市场看好的同时,随着技术的发展有望全面取代第一、二代半导体材料。
参考资料百度百科——半导体材料
半导体是指一种导电性可受控制,范围可从绝缘体至导体之间的材料。无论从科技或是经济发展的角度来看,半导体的重要性都是非常巨大的。很多人一直有疑问,半导体材料有哪些? 半导体材料有哪些实际运用?今天小编精心搜集整理了相关资料,来专门解答大家关于半导体材料的疑问,下面一起来看一下吧!
一、半导体材料有哪些?
常用的半导体材料分为元素半导体和化合物半导体。元素半导体是由单一元素制成的半导体材料。主要有硅、锗、硒等,以硅、锗应用最广。化合物半导体分为二元系、三元系、多元系和有机化合物半导体。二元系化合物半导体有Ⅲ-Ⅴ族(如砷化镓、磷化镓、磷化铟等)、Ⅱ-Ⅵ族(如硫化镉、硒化镉、碲化锌、硫化锌等)、Ⅳ-Ⅵ族(如硫化铅、硒化铅等)、Ⅳ-Ⅳ族(如碳化硅)化合物。三元系和多元系化合物半导体主要为三元和多元固溶体,如镓铝砷固溶体、镓锗砷磷固溶体等。有机化合物半导体有萘、蒽、聚丙烯腈等,还处于研究阶段。
此外,还有非晶态和液态半导体材料,这类半导体与晶态半导体的最大区别是不具有严格周期性排列的晶体结构。制备不同的半导体器件对半导体材料有不同的形态要求,包括单晶的切片、磨片、抛光片、薄膜等。半导体材料的不同形态要求对应不同的加工工艺。常用的半导体材料制备工艺有提纯、单晶的制备和薄膜外延生长。
二、半导体材料主要种类
半导体材料可按化学组成来分,再将结构与性能比较特殊的非晶态与液态半导体单独列为一类。按照这样分类方法可将半导体材料分为元素半导体、无机化合物半导体、有机化合物半导体和非晶态与液态半导体。
1、元素半导体:在元素周期表的ⅢA族至ⅦA族分布着11种具有半导性半导体材料的元素,下表的黑框中即这11种元素半导体,其中C表示金刚石。C、P、Se具有绝缘体与半导体两种形态B、Si、Ge、Te具有半导性Sn、As、Sb具有半导体与金属两种形态。
2、无机化合物半导体:分二元系、三元系、四元系等。 二元系包括:①Ⅳ-Ⅳ族:SiC和Ge-Si合金都具有闪锌矿的结构。
3、有机化合物半导体:已知的有机半导体有几十种,熟知的有萘、蒽、聚丙烯腈、酞菁和一些芳香族化合物等,它们作为半导体尚未得到应用。
4、非晶态与液态半导体:这类半导体与晶态半导体的最大区别是不具有严格周期性排列的晶体结构。
三、半导体材料实际运用
制备不同的半导体器件对半导体材料有不同的形态要求,包括单晶的切片、磨片、抛光片、薄膜等。半导体材料的不同形态要求对应不同的加工工艺。常用的半导体材料制备工艺有提纯、单晶的制备和薄膜外延生长。
半导体材料所有的半导体材料都需要对原料进行提纯,要求的纯度在6个“9”以上,最高达11个“9”以上。提纯的方法分两大类,一类是不改变材料的化学组成进行提纯,称为物理提纯另一类是把元素先变成化合物进行提纯,再将提纯后的化合物还原成元素,称为化学提纯。物理提纯的方法有真空蒸发、区域精制、拉晶提纯等,使用最多的是区域精制。化学提纯的主要方法有电解、络合、萃取、精馏等,使用最多的是精馏。由于每一种方法都有一定的局限性,因此常使用几种提纯方法相结合的工艺流程以获得合格的材料。
绝大多数半导体器件是在单晶片或以单晶片为衬底的外延片上作出的。成批量的半导体单晶都是用熔体生长法制成的。直拉法应用最广,80%的硅单晶、大部分锗单晶和锑化铟单晶是用此法生产的,其中硅单晶的最大直径已达300毫米。在熔体中通入磁场的直拉法称为磁控拉晶法,用此法已生产出高均匀性硅单晶。在坩埚熔体表面加入液体覆盖剂称液封直拉法,用此法拉制砷化镓、磷化镓、磷化铟等分解压较大的单晶。悬浮区熔法的熔体不与容器接触,用此法生长高纯硅单晶。水平区熔法用以生产锗单晶。水平定向结晶法主要用于制备砷化镓单晶,而垂直定向结晶法用于制备碲化镉、砷化镓。用各种方法生产的体单晶再经过晶体定向、滚磨、作参考面、切片、磨片、倒角、抛光、腐蚀、清洗、检测、封装等全部或部分工序以提供相应的晶片。
以上就是小编今天给大家分享的半导体材料的有关信息,主要分析了半导体材料的种类和应用等问题,希望大家看后会有帮助!想要了解更多相关信息的话,大家就请继续关注土巴兔学装修吧!
. 问题不严谨。电阻器是一种电子元件,半导体是一种材料,二者不在一个范畴,谈不上取代不取代。例如集成电路内部的电阻器就是由半导体材料制成的,分立元件中的一些热敏电阻、光敏电阻等也是半导体材料制成的。可能你想知道的是:电阻器能取代晶体管吗?
电阻器和晶体管是两种不同的电子元件,各有不同的功能,电阻器一般用来限流、分流和分压及阻抗匹配等,晶体管则一般用来放大、振荡、开关、转换等,就目前的现状来说,除特殊条件场合,电阻器是不可以替代晶体管的。
但有一种叫做忆阻器的元件,它是一种特殊的电阻器,它的电阻值可以由通过它的电流改变,因而使其具有开关和记忆等特性,也就具有类似并且优于晶体管的功能,可将运算与存储融为一体,它将改变目前计算机的设计逻辑,在未来很可能取代晶体管,成为新一代计算机的核心元件。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)