半导体物理简介:
是固体物理学的一个分支。典型的半导体主要是由共价键结合的晶体,如硅、锗。研究半导体中的原子状态是以晶体结构学和点阵动力学为基础,主要研究半导体的晶体结构、晶体生长,以及晶体中的杂质和各种类型的缺陷。研究半导体中的电子状态是以固体电子论和能带理论为基础,主要研究半导体的电子状态,半导体的光电和热电效应、半导体的表面结构和性质、半导体与金属或不同类型半导体接触时界面的性质和所发生的过程、各种半导体器件的作用机理和制造工艺等。
半导体物理学的发展不仅使人们对半导体有了深入的了解,而且由此而产生的各种半导体器件、集成电路和半导体激光器等已得到广泛的应用。
我觉得和保险丝差不多吧、半导体
室温时电阻率约在10E-5~E欧姆·米之间,温度升高时电阻率指数则减小。半导体材料很多,按化学成分可分为元素半导体和化合物半导体两大类。锗和硅是最常用的元素半导体;化合物半导体包括Ⅲ-Ⅴ族化合物(砷化镓、磷化镓等)、Ⅱ-Ⅵ族化合物( 硫化镉、硫化锌等)、氧化物(锰、铬、铁、铜的氧化物),以及由Ⅲ-Ⅴ族化合物和Ⅱ-Ⅵ族化合物组成的固溶体(镓铝砷、镓砷磷等)。除上述晶态半导体外,还有非晶态的玻璃半导体、有机半导体等。 本征半导体:不含杂质且无晶格缺陷的半导体称为本征半导体。在极低温度下,半导体的价带是满带(见能带理论),受到热激发后,价带中的部分电子会越过禁带进入能量较高的空带,空带中存在电子后成为导带,价带中缺少一个电子后形成一个带正电的空位,称为空穴(图1 )。导带中的电子和价带中的空穴合称电子- 空穴对,均能自由移动,即载流子,它们在外电场作用下产生定向运动而形成宏观电流,分别称为电子导电和空穴导电。这种由于电子-空穴对的产生半导体
而形成的混合型导电称为本征导电。导带中的电子会落入空穴,电子-空穴对消失,称为复合。复合时释放出的能量变成电磁辐射(发光)或晶格的热振动能量(发热)。在一定温度下,电子- 空穴对的产生和复合同时存在并达到动态平衡,此时半导体具有一定的载流子密度,从而具有一定的电阻率。温度升高时,将产生更多的电子- 空穴对,载流子密度增加,电阻率减小。无晶格缺陷的纯净半导体的电阻率较大,实际应用不多。
离子注入是离子参杂的一种。随着VLSI器件的发展,到了70年代,器件尺寸不断减小,结深降到1um以下,扩散技术有些力不从心。在这种情况下,离子注入技术比较好的发挥其优势。目前,结深小于1um的平面工艺,基本都采用离子注入技术完成掺杂。离子注入技术已经成为VLSI生产中不可缺少的掺杂工艺。………离子注入具有如下的特点①可以在较低温度下(400℃)进行,避免高温处理。②通过控制注入时的电学条件(电流、电压)可以精确控制浓度和结深,更好的实现对杂质分布形状的控制。而且杂质浓度不受材料固溶度的限制。③可选出一种元素进行注入,避免混入其他杂质。④可以在较大面积上形成薄而均匀的掺杂层。同一晶片上杂质不均匀性优于1%,且横向掺杂比扩散小的多。⑤控制离子束的扫描区域,可实现选择注入并进而发展为一种无掩模掺杂技术。…………离子注入技术应用领域2.1 离子注入应用于金属材料改性离子注入应用于金属材料改性,是在经过热处理或表面镀膜工艺的金属材料上,注入一定剂量和能量的离子到金属材料表面,改变材料表层的化学成份、物理结构和相态,从而改变材料的力学性能、化学性能和物理性能。具体地说,离子注入能改变材料的声学、光学和超导性能,提高材料的工作硬度、耐磨损性、抗腐蚀性和抗氧化性,最终延长材料工作寿命。离子注入提高工模具的耐磨性能、金属样品的抗疲劳性以及金属表面耐腐蚀性2 离子注入机应用于掺杂工艺在半导体工艺技术中,离子注入具有高精度的剂量均匀性和重复性,可以获得理想的掺杂浓度和集成度,使电路的集成、速度、成品率和寿命大为提高,成本及功耗降低。这一点不同于化学气相淀积,化学气相淀积要想获得理想的参数,如膜厚和密度,需要调整设备设定参数,如温度和气流速率,是一个复杂过程。上个世纪70年代要处理简单一个的n型金属氧化物半导体可能只需6~8次注入,而现代嵌入记忆功能的CMOS集成电路可能需要注入达35次。技术应用需要剂量和能量跨越几个等级,多数注入情况为:每个盒子的边界接近,个别工艺因设计差异有所变化。随着能量降低,离子剂量通常也会下降。具备经济产出的最高离子注入剂量是1016/cm2,相当于20个原子层。3 在SOI技术中的应用由于SOI技术(Silicon-on-Insulation)在亚微米ULSI低压低功耗电路和抗辐照电路等方面日益成熟的应用,人们对SOI制备技术进行了广泛探索。1966年Watanabe和Tooi首先报道通过O+注入形成SILF表面的Si氧化物来进行器件间的绝缘隔离的可能性。1978年,NTT报道用这项技术研制出高速、低功耗的CMOS链振荡电路后,这种注O+技术成为众人注目的新技术。从而注氧隔离技术即SIMOX就成了众多SOI制备技术中最有前途的大规模集成电路生产技术。1983年NTT成功运用了SIMOX技术大批生产了COMSBSH集成电路;1986年NTT还研制了抗辐射器件。这一切,使得NTT联合EATON公司共同开发了强流氧离子注入机(束流达100mA),之后EATON公司生产了一系列NV-200超强流氧离子注入机,后来Ibis公司也研制了Ibis-1000超强流氧离子注入。从此SIMOX技术进入了大规模生产年代。到了上世纪90年代后期,人们在对SIMOX材料的广泛应用进行研究的同时,也发现了注氧形成的SOI材料存在一些难以克服的缺点,如硅岛、缺陷,顶部硅层和氧化层的厚度不均匀等,从而导致了人们开始着眼于注氢和硅片键合技术相结合的智能剥离技术即SMART CUT技术的研制,上世纪90年代末期,H+离子注入成了新的热门话题。目前虽无专门的H+离子注入机,但随着SMART CUT工艺日趋成熟,不久将会出现专门的H+离子注入机。除了半导体生产行业外,离子注入技术也广泛应用于金属、陶瓷、玻璃、复合物、聚合物、矿物以及植物种子改良上。欢迎分享,转载请注明来源:内存溢出
评论列表(0条)